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ABSTRACT 

ASYMPTOTIC SOLUTIOHS TO 
COMPOUND DECISION PROBLEMS 

by John R. Van Ryzin 

Simultaneous consideration of a large number of statistical 

decisions having identical generic structure constitutes a compound 

decision problem. In this thesis, decision procedures depending on 

data from all problems are shown to have certain optimal properties 

asymptotically as the number of problems increases. 

More specifically, let X^, a = 1,2,... he a sequence of inde­

pendent random variables with X^ having distribution Pg , where 6̂  

takes a value in the finite parameter space Si = {0,...,m-l}. Let the 

space of all sequences {e^, a = 1,2,...} be denoted by fi„. Fix N and 

consider the first N members of the sequence of X^'s. For each 

a = 1 ... N, it is required to make a decision d^ among n available 

decisions {0,...,n-l}. Such an N-fold decision problem is called a 

finite compound decision problem. 

Any N X n matrix of functions T(x) = (t^j(x)), where 

t = Pr {d = jlx} with X = (x ,...,x ), a = 1,...,N, j = 0,...,n-l, 
aj o ' X u 

is a decision procedure for the M-fold compound problem. Define the 

risk of any such procedure, denoted by R(6.T) for 6 e fî , as the 

average of the risks for the N problems. With Pĵ (e) as the relative 

frequency of problems in the first H problems having P̂  as the govern­

ing distribution, i = 0,...,ra-l, we see that p(e)= (p^O),... ,p^^_^(e); 

constitutes an empirical distribution on fJ. There exists a non­

randomized procedure t'^gj Bayes against p(e) which has risk 
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(ti(p(e)) = R(6,t',gJ. The function R(e,T) - ((){p(e)), called the regret 

risk function for the procedure T, is used as a measure of the optimality 

of the procedure T. 

Existence of asymptotically good, unbiased estimates 

, N 
h = K y , h{X ) of p(e) is verified. To obtain procedures whose 

'•a=l a 

regret risk function converges to zero as N -•", these estimates are 

substituted into the procedure t',„, to form the procedure t-, which 
pit); n 

depends on data from all M problems. Under integrability assumptions 

on the kernel function h, convergence theorems for the regret risk 

function of t-̂  are proved. These theorems are all uniform in 9 e fi , 
h " 

The main result is that if [h| is integrable with respect to 

P. , i = 0,...,m-l, then the regret risk function of t^ converges to 

-1/2 
zero at rate 0(N ) uniformly in 6 c 12 . If m = n = 2, faster uni-

—1/2 1 

form convergence rates of o(N ) and 0 ( N " ) are attained under suc­

cessively stronger continuity restrictions on P and P and 

integrability assumptions on h. A uniform theorem of 0(N~ ) for the 

general m x n problem is also given under a strong continuity condition 

on the family lPo'""*^m-l^ "̂'̂  ̂  certain restriction on the m x n 

loss matrix of the generic problem. Examples violating the loss matrix 

condition are shown to have rate no faster than 0(N~''' ). 

Additional results are presented when m = n = 2 and Fo for 

a 
a = 1,2,..., depends on a fixed, but unknown, nuisance parameter 
T = (T^,...,T^) in a non-empty open set of Euclidean s-space. Under 

suitable regularity conditions on the likelihood ratio of P and P 

1 0 

at the point x, an asymptotic convergence theorem, uniform in 6 e [J 

and of 0(N ), e>0, is proved for the regret risk function of 
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the procedure obtained by substituting the estimate h for p(e) and a 

suitably Chosen unbiased estimate k = N'^ l^^^ k(X^) for T. Theorems 

which are jointly uniform in 6 e fi„ and x c C, a compact subset of R% 

are also given. When s = 1, two theorems dropping the factor N in 

the convergence rate are established under appropriate restrictions. 

Many examples illustrating the extent, applicability, necessity, 

and non-vacuity of the various theorems are added for completeness. 

The emphasis throughout the thesis is on obtaining optimal 

asymptotic procedures in the sense of uniform regret risk convergence. 





INTRODUCTION 

The idea of the compound decision problem was first presented by 

Robbins in [10]». When a large number of decision problems of iden­

tical nature occur, then the compound approach is applicable. In his 

paper, Robbins gave an example illustrating that when there are a 

large number of testing problems between two normal distributions 

N(-l,l) and N(l,l), then there exists a compound procedure whose risk 

is uniformly close to the risk of the best "simple" procedure based on 

knowing the proportion of component problems in which N(l,l) is the 

governing distribution. This compound procedure depended on data 

from all component problems. Also in [10], heuristic arguments were 

given to illustrate that such a phenomenon could be expected more 

generally. 

Hannan in [5] (see also Hannan and Robbins [7]) extended this 

result of Robbins to two arbitrary fully specified distributions; 

while simultaneously strengthening the conclusion by replacing "simple" 

by "invariant." Furthermore, in [7] it is shown that when the number 

of component problems is large, the compound procedure given has risk 

which is e-better than the available minimax procedure. 

In this thesis, we improve and generalize some of the results of 

Hannan and Robbins. Specifically, we examine asymptotically the dif­

ference in the risks (the regret risk function) of certain compound 

procedures and the empirical Bayes "non-simple" procedures. 

•Numbers in square brackets refer to the bibliography. 



2. 

In Chapter I, the general finite compound decision problem is 

presented. Also, we define "simple" Bayes procedures, which in turn 

motivate a class of "non-simple" compound decision procedures based on 

estimates of the empirical distribution on the finite parameter space. 

Theorem 1 solves the necessary estimation problem, while Corollary 1 

and Lemma 5 set the stage for later developments. 

In Chapter II, we treat the case of compound testing between two 

completely specified distributions P., and P^. Theorem 2 extends the 

basic theorem of Hannan and Robbins ([7], Theorem U) by strengthening 

the asymptotic convergence rate of the regret risk function. Two 

additional theorems (Theorems 3 and U) are proved. Both of these 

theorems give faster convergence rates under certain continuity require­

ments on P and P . 
o 1 

In Chapter III, we extend the results of Chapter II where possible 

to the general finite compound decision problem of Chapter I. 

Theorem 5 generalizes Theorem 2. Counter-examples to generalizations 

of Theorems 3 and 1* are given. However, by restrictions on the loss 

matrix of the component problem. Theorem 6 presents a suitable extension 

of Theorem h. 

In Chapter IV, the compound testing problem between two distribu­

tions in the presence of a nuisance parameter is considered. Conver­

gence tneorems for the regret risk function are given under suitable 

regularity conditions in the nuisance parameter. 

At this point we introduce notation which will be used consistently 

throughout this thesis. 



3. 

Let R"" be m-dimensional Euclidean space (R^ will be denoted simply 

by R). Let x = (x^ x^_^) and y = (y„ y^.^) be vectors in R". 

Define the vector xy = (x„y„ Vl^m-l'- '^^^ "̂"̂ '' ̂ ''°^'"'^ ^""^ 
„m-l 

norm of R"̂  will be denoted respectively by (x,y) = l^^^ x^y^ and 

||x|| = (x.x)"^^^. The inner product (...) and norm ||.{| notations will 

refer exclusively to R"" unless otherwise noted. Also, we will use 

|x| to denote max̂ ^ \ \ \ • 

Operator notation will be used to indicate integration. Let 

{S,^,V) be any finite measure space with 5^ a o-field on S and P a 

finite measure on (S,?'). If X(s) is any real-valued integrable 

function on S, then PX will be used to denote the integral yx(s)dP(s). 

If P is a probability measure and X is a real-valued random variable, 

then PX denotes the expected value of X. 

Also, we will make extensive use of the following notation for 

the characteristic function of a set A. The characteristic function 

of A will be denoted simply by A enclosed in square brackets; that is, 

fl if a E A. 

[A](a) = i 

[o if a ̂  A. 

In reference to the previous paragraph, if F is a set of ?' and X(s) 

is any real-valued integrable function, then the P measure of F is 

given by P[F] and tlie definite integral y^X(s)dP(s) by P(X[F]). 

We will adopt the notation of Halmos {[h]. Chapter VIII) to 

indicate induced measures under measurable transformations. Let T 

be a measurable transformation from (S,?',?) into (.S<, ^ ) , where 5'' 

is a o-field on S'. Then, let Pl"-̂  denote the finite measure induced 

on (S',f') under the transformation T. The measure PT is defined 
by the identity PT-^F'] = P [ T - \ F ' ) ] for all F- c f" • 



k. 

Finally, we shall make repeated use of the Berry-Esseen normal 

approximation theorem (see Loeve [9], P- 288). This theorem, for 

simplicity, will be referred to by the letters B-E and the uniform 

constant in the bound by S. The standard normal distribution function 

will be denoted by *(•) and the standard normal density by *'(•). 

Further notation will be introduced as needed. 



CHAPTER I 

THE FINITE COMPOUND DECISION PROBLEM 

1, Statement of the Problem. 

Consider the following finite statistical decision problem. Let 

U be a random variable (of arbitrary dimensionality) known to have one 

of m possible distributions Pg, 6 in the finite parameter space 

a = {0,...,m-l}. Based on observing U we are required to make a 

decision d zdff == {0 n-1} incurring loss L(i,j) (or L^) if 'd = j' 

when U is distributed as P^, i = 0,...,m-l; j = l,...,n-l. 

If we simultaneously consider N decision problems each with this 

generic structure, then the M-fold global problem is called a finite 

compound decision problem. More precisely, let X^, o = 1,...,N be 

N independent observations each distributed as Pg^ with 6̂  ranging in 

Si. Based on all N observations, a decision d^ in a&' is to be made for 

each of the N component problems. For the a*"" subproblem, the decision 

•d = j' represents selecting the i^^ column of the m x n loss matrix. 
a 

Note tnat in the case here considered all N decisions are held in 

abeyance until all random variables X^, a = 1 N have been observed. 

In considering compound problems of the type described above, most 

of the results are of an asymptotic nature; that is, as N -• •». Hence, 

it will be convenient to adopt the following viewpoint. Let a^ be the 

set of all sequences 6 = {eja = 1,2,.. .}where 6̂  ranges in a. Consider 

now the above-stated compound problem (for N finite) as imbedded in the 

denumerable compound decision problem indexed by 6 e SJ„, 6 = {6^}. 

Let P be the product probability measure X^^^ Fg . The above N-stage 
6 a 



compound problem is equivalent to the compound problem obtained by 

observing the first N members of the sequence of random variables 

{X^,X2,...} distributed as Pg, 6 E SJ^. 

Before proceeding, we introduce the following notation. With U 

as the generic name for the random variables X^ of the component 

problems, assume there exists a o-finite measure u dominating 

fp p ,} such that the measurable densities 
o' ' m-1 

dP. 
(1) f.(u) = — - (u) <, K a.e. p 

^ dy 

for some K < ". There is no loss of generality in this assumption 
m-1 

since we may always choose W = i._ ^< ^nd K = 1. 

Also in referring to the m x n matrix of losses L(i,j) or L , 

the rows will be denoted by L., the columns by L , and the difference 

k1 
L(i,k) - L(i,j) by L. , i = 0,...,m-l; j,k = 0,...,n-l. 

2. Decision Procedures. 

For the compound decision problem, a decision procedure may 

depend on tne full observation X = (X-ĵ ,... ,Xjj). Any N x n matrix of 

measurable functions T(x) = (t .(x)) will be called a randomized deci­

sion function (procedure) for the compound decision problem if for 
n-1 

a = 1,...,N; J = 0 n-1, t (x) = Pr{d = j|x} and I t fx) = 1. 

th In^ J~^ 
The a row of T(x) will be denoted by t^^(x) = (t (x) t (x)). 

oo an-1 

The decision function T(x) is said to be simple if there exist 

functions t.(.), j = 0,...,n-l such that t^^^x) = (t (x ) t (x )) 
" o a n-1 ct 

for a = 1,...,N. A simple decision function will be denoted by 

^ = '*o Vl'-
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With N fixed and 6 e S2„ we denote by R(6,T) the risk function 

for the compound decision procedure T(x). This risk is defined to be 

(a) 
the average of the component risks R (e,T) = Pe(Lg ,t (X)), for each 

a 

subproblem, o = 1,...,N. Hence 

(2) R(e,T) = N"-̂  ̂  _ R^(e,T) = PgW(6,T{X)), 

N (a) 1 " V " ; 
where W(e,T(x)) = N""" L_jLg .t (x)). 

1 a 
The risk (2) may be considerably simplified in the case of a 

simple decision function. For the sequence 6 c Si„ and i = 0 m-1, 

-1 " 
define the relative frequencies, p.(6) = N I [6 = i], of problems 

J. a = l ct 

in the first N problems in which the distribution P̂^ governs. The 

vector p(e) will be called the empirical distribution on a. 

Let t = (t ,...,t ) be a simple decision function. The loss 

incurred in using procedure t is 

= 1. 

(3) w(e,t) = N"-̂  I _ (Lg ,t(x )) 
a-± 01^ " 

= r'pi(e) tAVg .̂(Lg ,t(x ))} , 
i=o o a 

where AV. . indicates the numerical average on the Np^ values 6̂  
6 =1 

Now since (Lg ,t(x )) for 6̂  = i are independent identically distributed 

random variables with mean p.(t) = P.(L.,t(U)), we may express their 

expected average as p^(t) to obtain from (2) and (3), 

m-1 

(It) R(e,t) = I Pi(e) p.(t) = (p(e),p(t)). 



Let £ = (S ,...»5 ,) he any vector in m-dimensional Euclidean 
0 m-1 

space. Let t.(u) ̂  0, j = 0,...,n-l be a set of measurable func-
n-1 

tions such that T t.(u) = 1. Define the function (̂ (S.t) 
'-.1=0 J 

follows: 

(5) ^CS.t) = (C,p(t)). 

Note that for 5 = p(6) the function i|i becomes the risk function (it) 

for the simple decision procedure t. 

The problem of choosing t(u) to minimize i(j(C,t) for fixed E, is 

straightforward. From (l) and (5), we have 

n-1 

(6) *(C.t) = y I {5,L''f(U)) t.(U) . 
J=o •' 

Therefore, (6) is minimized in t for fixed E, by any vector function 

t (defined a.e. p) which is chosen as a probability distribution 

concentrating on the columns L minimizing the quantities (C,L f(u)). 

That is, t is of the form 

(7) t (u) = 1, 0 or arbitrary, for (C,L'^f(u)) 

<, >, or = min^^.(S,L''f(u)), 

n-1 
such that t (u) ̂  0 for j = 0,...,n-l and I t ,(u) = 1 a.e. p 

Note that if £; is a bona fide a priori distribution, 
m-1 

(0 ^ i^. I i^ = 1), then such a t would be a decision procedure 
i=o ^ 

Bayes against 5. 

We observe that any randomized procedure of the form (7) mini­

mizing .!((£;,t) may be replaced by a non-randomized version which 

also minimizes ^^,{£,,t) for fixed ̂  In particular, one such non­

randomized version is given by the coorainate functions 



(8) f (u) = < 
5,j 

9. 

1 if (5,L'̂ f(u)) < or = (C,L''f(u)) 

according as k < j or k > j 

0 otherwise. 

To see that (8) is of the form (7) we merely note that 

t'(u^ - (f (u) ... t' (u)) is a probability distribution concen-
\ C,o 5,m-l 
trating on the first column minimizing the quantities (S,L f(u)). 

In what follows we restrict ourselves to the non-randomized version 

t' of the Bayes procedure t^. 

In [6], p. 102, Hannan has given a useful inequality for Bayes 

rules. A statement and proof of a similar result is given here. 

Lemma 1. 

Let X be a space closed under subtraction. Let M(x,y) be a 

real-valued function on X x Y such that M(-,y) is linear on X for 

each y E Y and inf M(x,y) is attained for each x E X. Define 

f(x) = inf M(x,y) and let y(x) be any Y-valued function such that 

f(x) = M(x,y(x)) on X. Then, if x, x' E X, 

OiM(x.yCx")) - f(x) =M(x-x',y(x')) - M(x-x',y(x)). 

Proof. The lower inequality results from the definition of f(x) and 

the upper inequality follows by adding the non-negative term 

M(x',y(x)) - f(x'). 

How define for £ E R" the function 

(9) ((,(5) = inf^ 'I'U,^) = (5,p(t^)). 
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The last equality in (9) follows by noting that (7) minimizes i()(C.t). 

Observing that (C,p(t)) is linear in C and p. Lemma 1 and (9) yield 

Corollary 1. 

If 5, V E R™ , then 

(10) 0 = *(5,tj,) - •(?) = (5-?',p(tp - p(t^)). 

This corollary inspires the non-simple rule to be adopted later 

(see (12)). If p' E R is a good approximation to p(e) in the sense 

that ||p'-p(6)|| is small, then Corollary 1 says that the simple proce­

dure t ,(u) has risk within ||p'-p(6)|| ||p(t ,) - p(t (gJ|| of the 

minimum attainable risk in the class of all simple procedures, given 

hy (ti(p(e)). Therefore, not knowing p(e) in general, we seek estimates 

p = f(x ,...,x ) of p(e) which with the aid of Lemma 5 take advantage 

of the risk approximation of Corollary 1. 

3. Estimation of Empirical Distributions on Si. 

The results in this section are based on some unpublished lecture 

notes of Hannan [8]. 

Let (A be the class of all distributions on Si = {0,...,m-l}; 

that is, (7-' = {nln E R , n^ >. 0, J| n^ = 1} . For n E ^ define 

m 1 ^~° 
the probability mixture P = [ ~ n̂ P̂̂  with y-density f (u) = (n,f(u)). 

i=o 1 

The class of all distributions i^P is said to be identifiable if for 

any n, n' e f , i'^iu) = f ,(u) a.e. y implies that n = n'. 

Let L^(y) and L2(y) be the function spaces of y-integrable and 

y-square integrable functions respectively. The usual norm and inner 

product for f, g E L2(y) will be denoted respectively by ||f|| and 

(f,g) . 
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Lemma 2. 

The class (P is identifiable if and only if the set of densities 

(f f ,} are linearly independent in L (y). 
o * m - 1 •'• 

Proof. Sufficiency. Let f^(u) = f^,(u) a.e.y. Then, (n-n', f(u)) = 0 

a.e.y and by linear independence of tf^,....f^.^} it follows that 

n = n' for i = 0,...,m-l. Hence, n = n' and (P is identifiable, 
i i 

Necessity. Let (P be identifiable and let c E R" be such that 

(c,f(u)) = 0 a.e.y. Define ct and c^ as the positive and negative 

parts of c^. Then 0 = y(c,f(u)) = ^"^^ c^ and hence ^"^^ c^ = I^^^ c^. 

If I-^ ct > 0. define d̂  = d ^ ^ c^)"^ c^ and d" = d^I^ . ^ '̂ i* 

Then f (u) = f (u) a.e.y and by identiflability of (/̂, d̂  = d̂  for 
' d"" d" ^ 

all i. Hence, c. = c^ - c^ = 0 for all i and c = 0. Thus, necessity 

is proved. 

A vector function h = (h^.-.-.Vl' ""'' coordinate functions 

h. £ L (y) is an unbiased estimate for the class (P if P̂ h = n for 

all n e ^ . Under the condition of identifiability of the class ^ , 

existence of unbiased estimates for (P will be shown. Henceforth, in 

accord with Lemma 2, the set of densities tf„,.••.f^.iJ are assumed to 

be linearly independent in L^CK). Let t be the class of all unbiased 

estimates for the class (F. 
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Lemma 3. 

A necessary and sufficient condition for h c <5 is that 

P h = E = {& ....,« ) for i = 0,...,m-l, where 6 is the 
i i io i m-1 -̂J 

Kronecker 6. 

Proof. Sufficiency. If (P.h ) is the identity matrix, then 

P h = n(P.h.) = n for all r\ z P. 
n 1 J 

Necessity. Observe that z. z P and unbiasedness of h imply 

P h = £.; that is P.h = E.. 
E. l' 1 1 
1 

The following subclass of C is of particular interest. Let /Y 

be the subclass of £ such that if h E ̂ , h, £ L (y) for 

J = 0 m-1, where h = (h^,... ,h^_-j^). 

Let S be any subspace of L„(y) and S be the orthogonal comple­

ment of S in L (y). For any g E L2(y), denote by gg, g , the 

projection of g on S and S respectively. Note that if g E L„(y), 

g = gg + ggl. 

We now give a theorem which proves the existence of unbiased 

estimates for (P and which yields the structure of the class %(•. 

For j = 0 m-1, let S. be the subspace of L (y) spanned by 

{f^|i f j}. Let S be the subspace of L (y) spanned by {f ,...,f ,} . 

Theorem 1. 

The class rr is non-empty. Furthermore, "a z %(• it and only if 

h(u) = f»(u) + g(u) a.e. y, where f*(u) = (f. .(u)) (||f.„j.l| ) - ^ and 

j "̂  j '̂  
g (u) E S-'-for j = 0,...,m-l. 
J 
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Proof. Note that since f, z s{, P.ft = (ft.fi) = 0 for all i # j. 

Also, we have that P^f^ = (fi.fi) = 1. Thus, by Lemma 3, f* £ 6!' 

(and hence %/ is non-empty since f* £ L„(y)). Sufficiency follows 

by observing that P^gj = (gj,fi)jj = 0 for i,j = 0,...,ra-l. 

Conversely, if h £ /V̂  , let h = hg + hgJ-having coordinate 

functions hj = h.g + h.gX for j = 0,...,m-l. Since hjgl is in the 

orthogonal complement of S for j = 0 m-1, hg z 3/-. Hence, 

(f*-h.g,f.) = 0 for i,j = 0,...,m-l. But this implies fj-h^g i^ in 

S-'-as well as S. Hence, f» = hg a.e. y. Necessity follows by 

defining g = h„j.. 

Observe that the functions f* of Theorem 1 form the dual basis 

to {f ,...,f ,} in the conjugate space of the subspace S. 

Corollary 2. 

There exist h z S such that |hi(u)| = M a.e. y for i = 0,...,m-l 

and M finite. 

Proof. Choose hĵ (u) = f*(u) for i = 0,...,m-l. Then, since the 

f*'s lie in S, they are essentially bounded as linear combinations 

of the essentially bounded densities {f^,... ,f^_]_}. 

The importance of the class S in obtaining estimates for p(e) 

can now be seen. Let X = (X̂ ,̂... ,Xjj) be the random observation for 

the N-fold compound problem stated earlier. Define by use of the 

kernel function h E (J the random variable 

N 
(11) h(X) = N"^ ^ ^ h(X„) 

http://ft.fi
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This equation yields an unbiased estimate of the empirical distribu­

tion p(6) for all 6 z Sî , since Pgh'(X) = N"""" l^^^ Eg = p(e). If h £ <^ 

and h is bounded as in Corollary 2, then h(x) inherits this bounded-

ness through (11). 

Consider now the subclass .y of S . If h = (h^,...,h^_^) E >/, 

then boundedness of the densities f. implies P.h,(U) < ". Denote the 
1 1 J 

p 
variance of h under P. for i,j = 0 m-1 as o (h.). 

Lemma k. 

If h £ V > then Pg||h'-p(6)l| = C^N'^"-, where C^ = max^ I o^(h ). 

Proof. By direct computation, we have 

Pel|h-p(e)|| = l^^^ Pg(hj-pj(e))2 

m-1 m-1 

N L I- P-(e) 0 (hJ '•j=o '•1=0 ^1 1 j 

C^N-^ 

h. Non-simple Decision Functions. 

With h £ ̂  and the estimate h'(X) of p(6) given by (11), we 

now define a non-simple decision function which results from substi­

tuting h'(X) for p(6) in t^^gj as given by (T) (see Hannan and Robbins 

[7], p. '*'*). In so doing, we shall confine ourselves to that 

particular non-randomized version of t^^gj given by (8) and denoted 

^^ *p(e)* "^^^ resulting non-simple, non-randomized decision 
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procedure consists of the N vector functions t_(x ) = (t_ (x ),..., 
h " h,o 

t (x )) for a = 1 H, where 
h,n-l " 

1 if (h,L''f(x )) < or <. (h,L^f(x )) 
a ~ a 

(12) t'_ (xJ = { 
h,j 

according as v < j or v > j 

0 otherwise, 

j = 0,...,n-l. 

The question immediately arises regarding optimality properties 

of the procedure t_̂ . As a partial answer to this question, consider 
h 

the function 

(13) R(e,T) - •(p(e)) 

for the decision function T(x) and 6 E Sî  . This function will be 

called the regret risk function against simple decision functions for 

the decision procedure T(x). A worthy defensive goal is to select a 

decision procedure T(x) which makes the regret risk function small 

uniformly in 6 e Sî . In Chapters II, III, and IV it will be shown 

that the procedure t'_ (or a slightly modified version thereof), has, 
h 

under suitable conditions, good asymptotic properties in the sense 

that its regret risk function given by (13) is close to zero uniformly 

in e E Sî  for N large. 

We now give a useful decomposition lemma for the risk R(e,T) in 

(13) for T(x) such that 

(a) 
(ll*) T (x) = t^(x^) , 
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where c. = c,{x) = c(x x ) takes its values on a finite Euclidean 

k "•'-'• 

space R^ and t (u) = (t^ o^"'''"' •*C,n-l''''^ "̂̂  defined on R " U^^^ S^ 

with S, = {ulf. (u) > 0) such that l^~_ t .(u) = 1, t ,(u) 2 0 
1 J=o z,y ' ' C.J 

Lemma $. 

Let T(x) be a compound decision function of the form (lit) and 

let 6 E f2„. Then, 

(15) R(e,T) = P„(p(e), p(t )) 

^a=l ^k#j e 6^ Oa ^t"),!,. '̂̂  

where Pî (t̂ ) = P^(L^,t^(U)) and !, ' = cCx-^,... ,x„_j_,u,x 
a+i' .X,, 

and the P„ integral in each of the N-terms of the second term of 
u a 

(15) is on U. 

(a) 
Proof. Fix a = l,...,Ii and express Pg(Lg , T (X)) as an Iterated 

a 
integral, make a change of variable, and perform an added integration 

as follows, 

(16) Pg(Lg^.T("^x)) =/(Lg^.t^(^)(xJ) dPg^CxJn.^^dPg^ 

(Lĝ .t̂ (̂ )(u)) dPgJu)n^^^dPg^ 

= [(Lg .t (̂ )(U)) dP (U)n dP 

= PeV\'\(a)'"» •' 

where P Pg represents an iterated integral. Writing t , N(U) = 
a \a) 

* (a)̂ '̂ ) - t^(u) + t^(u) in the right-hand side of (l6) and averaging 

over all a, we have 
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(17) R(e,T) =N-^l'^^^PgPg^(Lg^,t^(U)) 

-1 yH + " L.. PePe'Lg ,t (̂ )(u) - t (u)) 

The first term on tne right-hand side of (17) may be simplified 

to P„(p(e),p(t )) by noting that for 6 = i,Fg (Lg ,t (U)) are point-

wise equal to P̂ tt (^\). 

The second term in (17) may be simplified to the second term 

in (15) by observing that (Lg ,t I^M) - t (u)) is the difference of 

two inner products and that the components of t ( \(u) and of t (u) 

sum to unity. 



CHAPTER II 

ASYMPTOTIC RESULTS FOR THE COMPOUND TESTING PROBLEM 
FOR TWO COMPLETELY SPECIFIED DISTRIBUTIONS 

1. Introduction and Notation. 

In this chapter we discuss the compound decision problem of test­

ing between two specified distributions. Robbins [10] showed that in 

the case where the component decisions were between n(-l,l) and 

il(l,l) there exists a decision function whose regret risk function 

approaches 0, uniformly in e£fi„, as the number of problems N becomes 

large. Hannan and Robbins [7] extended this result to the case where 

the component decisions were between any two completely specified 

distributions. More extensive discussions of these and related 

results are given in [5], [7], and [11]. 

We treat the case as given in [5] and [7]. Three uniform con­

vergence theorems for the regret risk function against simple decision 

functions will be given. The first of these theorems (Theorem 2 below) 

is an improvement of Theorem U in [7]. The improvement is in the 

rate of convergence. Before proceeding to the theorems some nota-

tional simplifications for testing between two distributions P and 
o 

P are in order. 

Let m = n = 2 and take L(0,0) = L(l,l) = 0, a = L(l,0) > 0, and 

b = L(0,1) > 0. Specify the dominating measure to be y = aP + bP 

1 o* 
and note that by (l.l), 

(1) af^(u) + bf^(u) = 1 a.e. y. 

18. 
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Define now the measurable transformation into [0,1] by 

(2) Z(u) = bfo(u) 

with (1) implying that 

(3) 1 - Z(u) = af-[̂ (u) a.e. y. 

Let yZ"-"- be the measure induced on [0,1] by the transformation (2) 

and denote by yZ"-'-(z) the non-normed left-continuous distribution 

function corresponding to yZ'^ Note that yZ-^(z) has total variance 

a + b since yZ"-'-(0) = 0 and yZ" (1+) = a + b. 

Identifying t^(x) = t^^(x) of Chapter I we can express a com­

pound procedure by the H functions t^(x), o = 1,...,N, since 

specification of t^^(x) is not necessary as t^Jx) = 1 - tĵ -L(x). Also, 

we represent a simple decision function by the single function t such 

that tjj(x) = t(Xjj). 

For any p real, define the vector ^ = (l - p,p) in 2-space. In 

accord with (1.5) define for the simple decision function t the function 

(ll) *(p,t) = b(l-p) Pot(U) + apPi (l-t(U)). 

A simple decision function minimizing (1*) for fixed p, as given by 

(1.7), can with the aid of (l) and (2) be written as, 

(5) t (u) = 1,0, or 6p as Z(u) <,>, or = p, where 0^ i^ = 1. 

The non-randomized version of (5) with 6p = 0, corresponding to 

(1.8), shall be denoted by t'. 

Also, by defining ~ = Pi(e), we may simply express the Bayes risk, 

given by (1.9), against (l-o",?) on Si = {0,1} as 

(6) ((.(e") = inf^ 4i('e,t) = iKe',t-) 

The assumption that P„ and Pi are distinct implies that f̂  and f̂  
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are linearly independent in L-^iv) • Furthermore, the choice of P 

implies f̂  and f, are essentially bounded functions. Thus, by 

Theorem 1 there exists a scalar function hcLglp) such that P^h(U) = i 

for i = 0,1; that is, identify h with h^ of Theorem 1 and regard M 

as a class of scalar functions (HQ being defined as 1-h). For such 

an h £ ̂ , define for i = 0,1, 

(7) a^ih) = PAhiv) - i)^, S^(h) = niax̂ ^̂ 3̂_ {a^(h)}, 

and for any 0 S p = 1, 

(8) o2(h) = pof(h) + (1-p) alih) 

From (l.ll) we now have the unbiased scalar estimate h(X) = N 

_N _ 
I h(X ) of e and from (1.12) the associated compound decision rule 
a=l 
(here slightly modified at Z(x ) = 0 or l) given by 

t»(x) = (tMx-L),...,tMxj,)), where, for a = 1 H, 
h h 

fl if Z(x^) < h", Z(xĵ ) E (0,1) or ZUJ = 0 
(9) tf.(x̂ ) = \ 

h [ 0 if Z(x^) I h, Z(x^) E (0,1) or Z(x^) = 1 

Observe that if h E [0,l], then (9) is a decision procedure Bayes 

against a priori (l-h,h) in the component problem. 

The Justification for modifying (9) at the endpoints Z(x ) = 0 

and Z(Xjj) = 1 will become apparent if one considers the risk function 

R(S,t) for any decision procedure t(x) = (t-|_(x),... ,ttj(x)). The 

component loss for the a subproblem using t(x) is given by 

a8a(l-ta(x)) + b(l-ea)t(j(x). Hence, this risk, as the expection of 

the average of the N component losses, can, with the aid of (2) and 

(3), be expressed as 
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(10) R(e,t) = N-\l"^^|{e^(l-t^(x))(l-Z(x^)) + (l-eJt^(x)Z(xJ}dy(x^). 

Now note that in (10) if t (x) 5* 1 for Z(x ) = 0 or if t (x) ̂  0 for 
d U >-* 

Z(x ) = 1 we may always redefine t (x) at these endpoints to achieve 

a risk which is at least as small as (10) (and maybe actually smaller, 

in which case t would be inadmissible). To avoid such a possibility 

with decision procedure (9) we have made the appropriate modifications 

at the endpoints Z(x ) = 0 and Z(x^) = 1, for a = 1,...,N. 

2. An Inequality for the Regret Risk Function. 

We shall develop a useful inequality (see (13)) for the regret 

risk function. We have already defined the procedure t| by (9) in 

such a way that there is no contribution to the a term of the risk 

R(9.t-) in (10) at the endpoints Z(x ) = 0 or 1 for a = 1,...,N. 
h ^ 

The risk R(e,t ) has this same property since R(e,t_) = R(e,t_). 

? e e 

Therefore, for convenience in notation, we define the restrictions 

of the P. measures to Z"-'-(0,l) as follows: p[{B) = P^(Briz" (0,1)) 

for any Borel set B, i = 0,1. Also, observe that p' = aP^ + bP^ is 
the restriction of y to Z~ (0,1). 

Consider now the application of Lemma 5 to bound from above 

R(e,t*) - •(e'). With t = t* in Lemma 5, we bound the second term 
h ^ h 

in the right-hand side of (1.15) from above by dropping all terms 
kj « » . . 

with negative coefficients L. and express t_, s and t_ in their 
^a ĥ  ' h 

characteristic function form to obtain. 



22. 

(11) N - ^ l " I P P L^' t*(<,) j^(")t^ ( U ) 

i N"^ aT P„ P' [h(°) = Z < h] al P P [h^ 
O E I I ° J-

-1 V r- < -(")l 

o 

where I. = {a|e^ = i) for i = 0,1. 

The integrand in the first term on the right-hand side of (1.15) 

can be expressed as ii(?,t-) and, since t^ is Bayes against (1-6,6) ,(()(e) 
h 6 

by (6) equals \^l{'Q,t'-), Hence, definition (1*), expression of t and 
6 6 

t,- in characteristic function form, and the definition of p' yield 
h 

(12) (p(e),p(tl)) - *(?) 

h 

= y' {(l-~)Z([Z<h]-[z'<?]) + "(l-Z)([hiZ]-[?iZ])} 

= y'{(Z-?)([?SZ<h']-[hSZ<?])} , 

where the second equality follows by set algebra and algebraic 

cancellation. 

Equations (ll) and (12) combine to yield the following inequality 

for the regret risk function: 

(13) R(e,ti)-,f(~) 
h 
= PgP'{(Z-'B')([?iZ<h"]-[h§Z<?])} 

^ " '^ ^ L E I I Pe Pl[h'°'5z<h] 

„- l r _ , _(a) . 
*'' ^ I c . E i „ P e P ; [ h 5 z < h ] 

where l^ = {o|o^ = i} for i = 0,1. 

When applying inequality (13) the three terms on the right-hand 

side will be denoted by A„, Bjj, and C^ respectively. 
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3. A Convergence Theorem of 0(N~ ). 

Sufficient conditions for uniform convergence (in 6ESi<„) of 

0(N"-'-̂ )̂ for the regret risk function of the procedure t^ will 

be given. Before proceeding to the theorem we state the following 

inequality: If C be a non-negative real number and if N-l=p=l, then 

(ll») Nl/2p M n {l,(Np-l)-^/2c}5 (l+c2)l/2 ^12 _ 

Verification of inequality (ll*) is straightforward: If 

(Np-1) S c2, then N1/S(NP-1)-^/^C = Cp^''^(l-(Np)-l)"^ 

g p̂ ''-̂ (l+c2)̂ ''2 , and if (Np-1) S c2, then Nl/2p = (Np)l/2 pl/2 

l (l«2)l/2 pl/2_ 

Theorem 2. 

If h £ ̂  and £ L3(Pi) for i = 0,1, then R(6,t^) - *(e) = Q(N-^/2) 

uniformly in 6 £ Si . 

Proof. In inequality (13) we show: (i) Af, = 0(N-l/2) uniformly in 

1/2 
6 £ Si„, and (ii) Bu and Cj,, are of 0(H" ) uniformly in 6 £ fi„. 

(i) Since p'{(Z-?)([?=Z<h] - [h=Z<?])} i |h-?|(a+b) a.e. Pg, 

then N^/^ AK i (a+b) P (Nl/2|h-?|) l (a+b) a (h) S (a+b) o(h). 
u 6 

Independence of 6 £ Sî  for the upper bound implies uniformity and (i) is 

proved. 

(ii) In bounding the term N^^^Bu, we can assume without loss of 

generality that 1^ is non-void and ffi(h)>0. If Oi(h) = 0, then 
h^"' = h + N-^(h(u)-h(x )) = h a.e. P„ x P{ for all a E X ^ , and hence 

a o 

[h lZ<'h] = 0 a.e. Pg x P^ for a E I^; that is, Bĵ  = 0. 
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Fix a £ I-|_ and H and let Cj = Oi(h) > 0. Define 

S = I (h(xi)-l), 0^ = Var(S), and T = N(Z-er) + 1 - ^.^^ h(x.). 

i£ll,i?'a ° 

Then, 

(15) [h'"'=Z<h] = [T-h(xa)<siT-h(u)] 

Apply the B-E theorem conditionally on u, x^, and x^, i e I^, to the 

normalized sum a""''S at the endpoints o~ (T-h(x^)) and o (T-h(u)) and 

bound the resulting absolute difference in normal d.f.'s by 

*'(0)!h(u)-h(x )|o~"''. Noting that o =(N?-l)o^, the result from (15) is 

_(«)< _ 
(16) Pg Pi[ [h =Z<h] 

_ i/2 ]_ 
f min{l,(N6-l)" ($'(0)o' P^Pg |h(u)-h(X„)| +2eai)} 

a 

where a = o~^ P3_|h(U)-l| ̂ . 

V/eakening the bound in (l6) by the Schwarz inequalitj' applied to 

P{Pg |h(u)-h(X )| = {P,'P (h(U)-h(X ))2}"'''̂  t 2̂ ''̂ a , and summing (l6) 

_ T /p 

over all a E I,, we have Bĵ  = a 6 min{l,(Ne-l)~ h,}, where 

1/2 
b, = 2 J'(0) + 2Ba-]_. Inequality (ill) now yields the desired result 

N1/2 B,̂  < ad.bf)'/^ 

A similar argument shows that N CM _ b(l+b ) . where b = 
1̂  - o ' o 

2^/2^,(0) + 26a^ with a,̂  = a - \ | h ( u ) p . Finally, since b^ and bj_ 

do not depend on 8 e Sî , (ii) is proved. The theorem now follows by 

(i), (ii) and inequality (13). 

At this point it is worthwhile to make a few remarks regarding 

the assumptions on h in Theorem 2. By the choice of p it is evident 

that f^ and fj_ are essentially bounded and hence Corollary 2 guarantees 

the existence of an estimate h which is also essentially bounded. Thus, 

it seems unnecessary to weaken the assumptions on h in Theorem 2 to 

include h's whose third absolute moments are finite under P and P , 
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The importance of bounded h's is also illustrated by the constructive 

procedure given by Hannan and Robbins ([7], PP. '*2-'*3) for obtaining 

a uniformly bounded kernel estimate h which is unbiased and minimizes, 

for fixed p, 0<p<l, Pp(h) given by (8). 

However, we present now an example which shows that the enlarged 

class furnishes an unbounded unbiased estimate h(x) of 8 for all 

8 E Si which is easy to compute when compared to the estimate f (x), 

given by Theorem 1 and (l.ll). 

th 
Example. Let X̂ , = (X^^ X^n) be the random variable for the a 

subproblem. For each a = 1,...,N, assume X^^,...,X^^ are n independent 

identically distributed random variables having one of two distributions 

C (•) for i = 0.1. Let G.(') be a normal distribution function with 
i* ' ' 1 

mean i"̂  and variance "2, for i = 0,1. Assume to-̂  > oî . Let P^ and P-|_ 

denote the respective product measures o" and G-ĵ. Denote by g^{') 

and Pi(-) for i = 0,1 the Lebesque densities of Ĝ^ and P̂  respectively. 

Then p.(u) =n" gi(u,) for i = 0,1 is the joint density of the n 
1 j=l -̂  -̂  

independent random variables U-ĵ ,..., U^. 

Observe that p.(u), for i = 0,1 are bounded and we may apply 

Theorem 1 and Corollary 2 to obtain a bounded estimate f*(u) = 

f»(u ,....u ). By Theorem 1, f»(u) = PigiCn) llpj_gJr where P;LS-̂ (n) = 

Pl(u)-(Po,Pi)llpoir^ PQ'"'- ^'^ ̂ 2 "°™^ ^"^ "̂"̂ '' P'"°̂ =̂'̂  ̂ " ̂ ®̂'''' 

expressions are with respect to n-dimensional Lebesque measure. Simple 

linear space algebra therefore yields 

IPO M ^ PI'") - (Po'Pl' Po'") 
(17) f*(u) 

I P X H ^ - 'Po'Pl^' 
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We now compute the norms and inner product in (17). For i = 0,1 

(18) \\pf = (2.c2)-n n^^^l„ exp (-o-^iu.-^.f} du. 

= (2.^/2 ̂ j-n ^ 

where the second equality follows from the transformations 

V. = 2^^^ o""''(u.-iD. ) for j = l,...,n. Also 
J J 1 

(p^.p^) = (2,io2)-" n^^^/„ exp {-i2o^r^[{u^-^J^HM^-w-^)^]} du_. 

= (2110̂ )-" c V ^ ^ / ^ " exp {-o"̂ [u. - |(V^i)]^} lUj 

-2 2 

where c = exp {-(2o) (uj.-oi ) }. The second equality follows by complet­

ing the square in u. in the exponent of the n integrands. Transforming 

the n integrands in this last expression by v. = 2 o ["i~ "o^^ +u, ) ] 

for j=l,...,n will then yield (p ,p ) = (2Tr a)~ c . This result 

together with (18), when substituted into (17), furnishes the unbiased 

estimate 

(19) f*{u) = {2i,^^^af d-c^")-^ (p^(u)-c"p^(u)) . 

With X = (X̂ ,...,Xjj) and X^ = i \ i . - - - , \ J for a = 1 N, (19) 

can be used as a kernel function in (1.11) to give the following 

unbiased estimate of 6, 

1 " 
(20) f*(X) = N y , f*(X ) 

''a=l a 
= (2.^/2^)" (l-c2")-l r ^ I (Pl(^a)-"Po(\)) 

= c.N-l Ut-P(=lI-=l(X^j-.^)2).c" exp(cj"^^(X^j-t.j2,j , 

where c^ = (2)" (l-c " ) " and c^ = -(2â )"-'-, From (20) it is evident 

that the unbiased estimate f*(X) of J is not easy to compute. 

However, consider the following unbounded estimate of ?. Let 
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Then, we have P h(X ) = 6̂ . Therefore, h{Xj is an unbiased estimate 

of 8 = 0 or 1. Hence, in accord with (l.ll), 
a 

(21) h(X) = N-^ f ^ h(Xj = (-"i-^)"^ (X - î J 
a=l 

is an unbiased estimate of ? for all 6 e Sî . The computational 

advantage of (21) over (20) is apparent, and this example serves to 

illustrate the usefulness of the weakened assumptions on h in Theorem 2. 

The above example can be generalized to any two distributions 
3 

P and P, for which there exists a function C with P^|;(U)| < <» and 

U). = P.C(U) for i = 0,l,u^^u-^. Define h(u) = (ui-uj^)" (C(U)-IDO). 

Then h satisfies the conditions of Theorem 2 and can be used as the ker­

nel in (1.11). This is the type of estimate suggested by Robbins in [10] 

where he uses ̂ ( X + 1), with X = N"^ l^^^ X^, as an unbiased estimate 

of ? in the compound testing problem where the o component problem is 

testing N(-l,l) against N(l,l) based on one observation X^. 

In the next section this generality of estimates is not retained. 

The proofs of Theorems 3 and h utilize stronger properties of h. 

Theorem h requires essential boundedness, while Theorem 3 has strong 

moment assumptions on h. 

1*. Convergence Theorems of Higher Order. 

Convergence rates faster than that in Theorem 2 are obtainable under 

successively stronger sufficient conditions. The following conditions 

on the continuity of the induced distributions P^Z"^ for i = 0,1 are 

pertinent. 

(I) Let the induced distributions PiZ"^ be continuous functions 

on (0,1) for i = 0,1. 

It is an immediate consequence of (l) that y'Z"^ is continuous 

(and hence uniform continuity) on [0,1]. 
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To see this, note that P'Z-^(z) = P[0<Z(u)<z, Z(u)<l] implies that 

p'Z-^{0+) = inf3>o y'Z-l(z) = 0 = p'Z-^(O) and y'Z-l(l+) = inf^^^ 

p'Z'-'-(z) = y'z'-'-d). These results together with left-continuity of 

p'Z (z) imply y'z" is continuous on [0,1]. 

(II) Let X be Lebesque measure and P^Z" be absolutely continuous 

with respect to X, for i = 0,1. Let there exist a K' < " such that 

dP • Z " 

(22) — i (z) S K' a.e. \ . 

dX 

It is an immediate consequence of (II) that 

(23) — (z) < (a+b) K' a.e. X. 

dX 

We now prove with the aid of inequality (13) the following two 

uniform convergence theorems for the regret risk function. 

Theorem 3. 

Let h £ 1^ be such that P^|h(U)-i|'^ ̂  2~^o^{h)ki q^'^; 

k = 2,3 i=0,l, and some q > 0. Then, if (I) holds R(e,ti)- i}i(?) = 
h 

o (N"-'-'2) uniformly in 6 E Sî . 

Proof. We show (i) Aj, = O(N-1/2) uniformly in 8 E Sî  and (ii) Bjj and 

1/2 
Cjj are O(N"-^") uniformly in 8 E Si„. 

(i) Let £ > 0 be given. Under assumption (l), y'Z"-'-(z) is 

uniformly continuous on [0,l] (and hence on R ) , Therefore, there exists 

a 6 = 5(E) > 0 such that y'Z"-'-[ [zj_,Z2) ] 4 Q~'^^^ z whenever |z2-Z3_| < 6. 

Choose NQ sufficiently large such that N^ = 8(6e)"^ {(a+b)o'}2, where 

_2 _ 2 
o = 0 (h). Let E = {|h-6| t S} and observe t h a t by Tchebichev 's 

i n e q u a l i t y . 
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(21*) P , [E] ^ N"^ &~^ a^(h) 

< „ - l ^-2 - 2 = N 6 0 

Consider now the term A^ ,, = N{P„y'(Z-S) [ 6 = Z < h ] } . Use of t he 
1,N D 

pointwise inequality (Z-'e)[8 ̂  Z <h] = |h-6|[e 5 Z <h] in Â ^̂ ,̂ fol-

2 < 
lowed by the Schwarz integral inequality yields the bound A^ jj = 

c-(h) P {p'[i = Z <h]}^. In the second factor of this bound, partition 
6 8 

the space under the P integral into E and its complement E , noting 

that on E*̂ , p'[ 8 = Z <h] = p'Z"-̂ [ ["e,h) ] = S,''^'^ z , while on E, 

p'[6 = Z <h] = (a+b). Hence, A^^^ i o|(h)(8-^2 ^ (̂ ^̂ j2 p^g]). 
> < 1 -

Inequality (2l*) and the choice of N^ yield for ii = li^, A^ ^^ - -^ at. 

By a similar argument we obtain A^ jj=N-'-'̂ {PgP'(S-Z) [h = Z <e]} ^ OE. 

Observing that N̂'-̂ Â̂^ = A^ ĵ +Â  ^, the previous two inequalities yield 

N'''''̂A - OE. Since z is arbitrary, and since both a and N^ are inde­

pendent of 8 E Sî , (i) is proved. 
(ii) Let £ > 0 be given. By uniform continuity of P^Z (z) on R, 

1 < 1 2 
there exists a. &< = 6'{z) > 0 such that Pj_Z" [[z^,Z2)] = ^ ^ if 

|z -z I = 6'. The proof for the term Bĵ  relies upon properly bounding 

the two terms on the right-hand side of the expression 

(25) B„ = "•' - lacl/i^^^^ ^e'^^"^ = ''^^^ 

+ N"^ a y r PM(l-[F])Pg[h^"> = Z<h]} . 
"•aEl- 1 6 

Where F = {|Z-6l = 6'}. The two terms on the right-hand side of (25) 

will be denoted by B^ ^ and B^ ^ respectively. 

We first bound the B term in (25) by a B-E approximation argu-
i,r» 

ment. As in the proof of Theorem 2, we assume without loss of generality 

that 0^ = o^(h) > 0 and I is non-void. By a B-E approximation condition­

ally on u, x^, and x^, icl^ applied to a*"" summand in B^^^ we have by 
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(15) and (16), 

(26) P|{[F]Pg[h'"^*Z <!]} 

^ min{PMF],(Ne'-l)"^^^(*'(0)o"^P^Pg |h(U)-h(X^) | [F]+2Ba^Pj_[F])}. 
1 a 

Weakening in (26) by the Schwarz integral inequality to obtain 

P^Pg |h(U)-h(X^)|[F] = •^''^ Oj_{P^[F]}'^ , observing that our choice 

of 6' implies that Pj^[F] = tP, and summing (26) over all ot e Ij_, the 

definition of B-ĵ  jj and inequality (1**) yield 

(27) N1/2B^ ^ < a£2 N1/2 I min{ 1 ,(N?-l)-^''^( 2^''^ J'( O) E'^ + 26a^)} 

i aE(E+2-^^^J'(0)+26a^E). 

Since £ is arbitrary and the bound in (27) is independent of 6 E Si„, we 

have 

1/2 

(28) lira N B, ,, = 0, uniformly in 6 E fi„. 

We now bound B„ ,, in (25) by Bernstein's exponential inequality 

given in the following theorem (see [2] for proof). 

Theorem: (Bernstein). 

Let Y , Y .... be a sequence of independent random variables with 

o2 = Var(Y. ) and such that P|Y.- PY . | = 2-^ a2k!q'^"^, for k = 2,3,...; 
1 1 1 1 1 

i = 1,2,..., and some q > 0. Let S = T" (Y. - PY.) and s2 = Ŷ ,., a-. 
' • ' n 1=1 -̂  ^ n ''i-l 1 

Then, for any t > 0, P[|Sj^|>tSn] < 2exp{-( 2+2qts^-'-)~ t2} . 

Before using this theorem for bounding Bg jj observe the following 

set inclusion, 

{|Z-6'| > «', F " ' < Z < h) 

C{h-?>6'}U{h^°'-?<-6'} 

Substituting this set inclusion into Bg jj and observing that a simple 

_(a) _ ' , 
change of variable implies PgPj^[h -e<-6'] ^ Pg[h-e<-6'] for all a E I , 
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we obtain B„ „ = a'sp [ |h-'6'|>S']. Application of Bernstein's inequality 

to this last expression gives 
p 2 

Bg JJ < 2a? exp{-N(6')^(2o^h) + 2q6')" } 

1 2a exp[-N(6')^(2o^(h) + 2q6')"•"•] 

This exponential bound is independent of 8 E Si„ and hence 

limjj.̂ N-'-̂ B̂g JJ = 0 uniformly in 8 e Sî . 

This last result together with (28), when substituted into (25) 

1/2 
implies B,, = °{U~ ) uniformly in 8 E Sî . A similar argument holds 

for Cj, amd (ii) is proved. The theorem now follows by (i), (ii), and 

inequality (13). 

If the estimate h is essentially bounded by M, then the conditions 

of Theorem 3 are met by taking q = 3"''"M. The estimate h in the example 

following Theorem 2 is an unbounded estimate satisfying the conditions 

of Theorem 3. 

Theorem k. 

Let h e £ and |h(u)| ^ M a.e. y. If (II) holds, then 

R(8,tl) - ()>(?) = 0(N-^) uniformly in 6 £ Si„. 
h 

Proof. We bound the terms Af,, Bjj and Ci, in inequality (13). Expressing 

the term Ajj in the integral form below and bounding in accord with (23) 

(which flows from assumption (II)), we obtain a uniform bound for Ajj as 

follows: 
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AJJ = Pg/{(z--)([Flz<h] - [ S Z < ? 3 ) ) ^ ^ (Z) dZ 

= (a+b) K'Pg/(z-~)[e'^z<h] dz 

= N-^(a+b)2K'o^h) 

= N"^(a+b)|K'^(h) 

The term B can be treated in a similar manner after first bound­

ing h'°*= ii + (h(u)-h(x ))N"-'- from below by h-2MN"-'- for each a e Î ^ and 

then use assumption (II) to obtain, 

Bjj = ae'PgP]_[h'-N-^(2M) I Z < h] 

= a?Pg/[h-N-^(2M) i z < h] '^i^ (z) dz 

= N"-"- 2aK'M 

In a similar manner, one has Cj, = N~ 2bK'M. 

Substituting these three upper bounds for Ajj, Bjj, and C[j 

respectively into inequality (13) yields an upper bound on the regret 

risk function for t l given by N~ (a+b) K'(o^(h) + 2M). Since this 
h 

bound does not depend on 6 e S!_̂ , the theorem is proved. 

5. Examples Satisfying Theorem 3 or h. 

Two examples satisfying each of the Theorems 3 and t̂ are given. 

Example 1. 

Let U = (U-,,..,,U ) be the generic random variable for the ct 

problem. Assume U]_,...,Uj^ are independent identically distributed as 

either Gj^(t) = 1 - exp (-w^t), '^^>0, t = 0 or as Gi(t) = 1 - exp {-U2_t}, 

1̂1 ' 0, t i 0. Furthermore, assume that i^^ "^ ^^i "^ 2(1)̂ . Let go(t) and 

g2(t) be the Lebesque densities of C,^{t) and G]_(t). Then Z(u) defined 

by (2) is given by 
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b n̂ ^̂  gju.) 

a n" g-,(u ) + b n" go(u_j) 

J = l -̂  J J = l -J 

= (ab-l ((.iioŜ )" exp {(î o-'̂ i) I"=i Uj} + l)' 

The induced distributions P̂ Z"-'-(z) for i = 0,1 are given by 

P.Z-l(z) = to^/[Z(u)<z] exp {-"i Iĵ -L Uj} n"^^ dUj . Transforming 

this multiple integral by Vĵ  = Iĵ ĵ  " j ̂  '̂  = l.....n. which has 

Jacobian 1, followed by integration on the variable Vn,Vn_i,....Vg 
yields for i = 0,1, 

Ai^l-'^o)"-'•;( z) , 

(29) PiZ-^(z) = Ol" r-l(n) J^ vT exp {-uiiV̂ } dv^ 

where dz) = log {(t-iui-l)" ab'^zd-z)-^} . For i = 0, transform this 

integral by means of the transformation v-|_ = {u;^-m^)~ c(w) to obtain 

P Z-^(z) = C, r(l-w)'^l-"°''''''^°-"^' „(-o-l)-S[,(,)]n-l,. 

, C 1-1 n w-̂ wi-tDô  
„-l/ \r I \-^l -l^lJo^ul-^l)o' \ r^ 1\ ° 
r (nHu ((D;L-IDO '̂o'̂i ) ' (ba-l) where C, 

n , n .,_ n\-l 
and C = hu^ (auî  + huj . 

This integral expression immediately implies that FQZ (Z) is 

absolutely continuous with respect to Lebesgue measure X, and we may 

define the following density 

dP Z-1 (a);î -u)j,)-̂ (2a)„-t̂ l) {io^-a^r^i _i 
(30) (z) = C„(l-z) z U ( Z ) ] 

dX ° 

if C 5 z < 1 and 0 otherwise. 

Observe that the assumption 2u>^ > u^ > îo implies that the factor 

(l-z)̂ '̂ l'"ô "'''̂ 2iao-»l) dominates the density (30) as z - 1 and hence 
density (30) approaches 0 as z + 1. This result implies that density 

(30) is continuous on the closed interval [C,l], and hence the density 
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(30) is bounded on the closed interval [C,l] (and therefore on [0,1]). 

In a similar manner, it can be shown that 

dP Z'^ % ( ' " l - % ) ' ^ (tiî -a.J-l(a.̂ -2a.3_) 
(31) - ^ (z) = C.d-z) z [?(z)]" 

dX 

if C = z < 1 and 0 otherwise, where 

-1 ,-1, i>"i("T'^n)"''-," r^ -l^"l("l-"o) 
Ci = r '•(n){a,;L(uii-iOo) ̂ (t̂ ô î"̂ ) 1̂  1 o } (ba ) 

An argument similar to that following (30) shows that density (31) 

is bounded on [O.l]. Note that the assumption 2OJQ > u>-^ is not 

necessary in showing (31) is bounded on [0,l]. 

Since (30) and (31) are bounded on [0,1], assumption (II) is 

verified and Theorem 1* holds for Example 1. 

Example 2. 

Same as Example 1 except assume that tij]_ = 2(jjp. Observe that the 

density (30) now approaches <» as z "*• 1 and, hence, is unbounded on 

[0,l]' Therefore, the assumptions of Theorem h are violated. However, 

assumption (I) and, hence. Theorem 3 holds in this case by merely 

noting that (29) implies that P^Z" [Z=z] = 0 for i = 0,1 if 

C = z < 1 (and therefore if 0 < z < l). 

Example 3. 

Let U = (U]_,... ,Uĵ ) be the generic random variable for the a 

problem. Assume U]_,...,U^ are independent identically distributed as 

either GQ(t) or G2(t), where Gi(t), for i = 0,1, is a normal distribution 

function with mean Wĵ  and standard deviation o. Assume UJT < UJQ. 

Let go(t) and g.ĵ (t) be the Lebesque densities of Go(t) and G]_(t). Then 

Z(u), defined by (2), is given by 
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Z(u) = bfQ(u) 

-"j=l6l("j' * ^ VlEo("j) 

= {ab"-'-C]_ exp {cg I _ u } + l} , 

where Cj_ = exp {n(2a2)-l(u)̂ -iDf). 1 and Cg = {u>-i-u^)c-^ < 0. 

Therefore, since y"? , U. is the sum of n independent normals, the induced 
'•J--'- J 

distributions Pĵ Z"-'-(z) for i = 0,1 are given by 

F^Z-Hz) = Pi[j:U, < Cg''" log {(ac-|_z)"̂  b(l-z))] 

r-ti(z) 
= J_^ J'(t) dt, 

where ^^(z) = (n̂ ''2c!)-̂ {c-̂  log {(ac^z)-^ b(l-z)} - n,̂ .} and 

*'(t) is the density of N(0,l). 

For i = 0,1, transform the integrals by t = ^^(w) to obtain P^Z" (z) = 

/ l'(c.(w))|;j^(w)|dw. This integral expression immediately implies 

that P-Z"-'-(z) is absolutely continuous with respect to Lebesque 

measure X for i = 0,1 . Since \^[iz)\ = (n ojcglzd-z)} , 

the induced Lebesque densities are given by 

(32) -^^i^(z) = {n^/^ alc2|z(l-z)}"^I'(q(z)) 

if 0 < z < 1 and 0 otherwise for i = 0,1. 

From the definition of Ci(z), we see that c.(z) + - or - according 

as z + 0 or 1. Hence, S'(ti(z)) -> 0 at an exponential rate as z - 0 or 1 

and thus I'(Ci(z)) is the dominant factor in (32) as z + 0 or z + 1. 

Therefore, (32) - 0 as z + 0 or z + 1, for i = 0,1. Since the densities 

(32) are continuous on the open interval (0,1), the above argument shows 

that the densities (32) are continuous on the closed interval [0,1]. 
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This in turn implies that these densities are bounded on [0,l]. 

Assumption (II) is thereby verified and Theorem it holds for Example 3. 

Example h. 

Let U = (U2^,..,,U ) be the generic random variable for the a*" 

problem. Assume U-,,..,,U are independent identically distributed 

random variables having distribution either GQ(t) or G]^(t). Furthermore, 

for i = 0,1 assume G.(t) is absolutely continuous with respect to 

Lebesque measure and has density gi(t) = c(iDi) exp {a)iT(t)} h(t) 

where T(t) is strictly monotone in t. Then Z(u), defined in (2) , 

is given by 

Z(u) = bfo(u) 

= |ab-l{c(<Di)c-l(t.o)}" exp {(toi-o.̂ ) Ij=i T(uj)} + l}" 

Note that the induced distributions PiZ-i(z) for i = 0,1 are such that 

(33) PiZ-l[Z=z] = Pi[Ij=i T(Uj) = S(z)] 

for 0 < z < 1, where 

C(z) = (cji-uo)""^ log{a-lb(l-z)z-^}[c(tOo) c-i(u)-;̂ )]" 

With the aid of (33) we will show that P̂ Z"-"- is continuous on (0,l) for 

i = 0,1, and hence Theorem 3 holds. 

Let V(Uj^,...,U ) = I,_i T(U.). The measurable transformation V 

from R" into R induces a probability measure P^V , for i = 0,1, such that 

(3M Pi[Ij=l T(Uj) = dz)] = PiV-l[V = d z ) ] 

for 0 < z < 1, 

Note that P.V~ (v) is the distribution of the sum of n independent 

random variables T ,...,T , where T. = T(U/), j = l,...,n. Each of 

n random variables T has, for i = 0,1, continuous induced distribution 

functions P^T" (t) = P^[T(Uj) < t]. Continuity follows since strict 
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monotonicity of T(-) implies that PiTj-'-[Tj = t] = P.[T(UJ) = t] 

= P.[U. = T"-'-(t)] = 0, for i = 0,1; j = l,...,n. Therefore, we conclude 

that P.V" (v), as the convolution of n continuous distribution functions, 

is continuous, for i = 0,1. 

Hence, for i = 0,1, we obtain that PiV-l[V = ̂ (z)] = 0 for all 

z in (0,1). This, in turn, implies by (33) and (3lt) that PiZ-^[Z=z] = 0 

for i = 0,1 and z E (0,1). 

We have now exhibited a whole class of distributions for which 

assumption (l) and hence Theorem 3 are verified. 



CHAPTER III 

CONVERGENCE ThEOREIvlS FOR THE GENERAL 
FINITE COMPOUND DECISION PROBLEM 

1. Introduction. 

In this chapter we shall extend Theorem 2 to the general finite 

compound decision problem of Chapter I, where the component problem 

has finite m x n loss matrix (L(i,j)). Counter-examples to the ex­

tensions of Theorems 3 and h are given. However, under a certain 

restriction on the loss matrix (L(i,j)), a theorem analogous to 

Theorem 1* is proved. 

I 

In Chapter I, we proposed the non-simple procedure tr- defined 

by (1.12). To facilitate asymptotic study, we express the regret 

risk function of tr in the form (1) below. Let p(e) = (p„( 8 ) , . . . ,p .,( 

for 8 E S2„ be the empirical distribution of Si. Recall that t /„> 
plB; 

given by (1.8) with C = p(6) is a simple decision procedure Bayes 

against p(6). Hence, by (1.1*) and (1.5) we may express (f(p(e)) = 

R(e,ti) = (p(e),p(t')). Identify t = t-̂  in (1.15) of Lemma 5 and 
o g ^ n 

subtract the above term from the first term on the right-hand side 

of (1.15). Since Corollary 1 yields (p(e),p(t^) - fiit^i 

(p(e)-h, P{t^) - p(t'jgj), we then have 

(1) R(e,t^) - •(p(e) = Pg(p(8)-h, p(t^) - p(t', )) 
p(8)' 

When applying inequality (l) the first and second terms on the right-

hand side of (1) will be denoted by Ajj and Bj, respectively. 

38. 
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, -1/2, 
2. Uniform Convergence Theorem of 0(H ). 

The following theorem generalizes Theorem 2 for an arbitrary 

m x n loss matrix. 

Theorem 5. 

If h e ^ and h, e h.^^'P^) for i,j = 0,...,m-l, then 

R(8,t-) - i(i(p(e)) = 0(N"-'"'^) uniformly in 8 £ Si„. 

Proof. In inequality (l) we show: (i)Ajj = 0(N"̂ ''2) uniformly in 

6 £ Si and (ii) B., = ©(N""'"''^) uniformly in 6 e Si„. 
C O |\| 

( i ) By the Schwarz m-space i n e q u a l i t y , we have , 

(2) N^/2 A j j S N ^ / S g | ( p - h , p ( t ^ ) - P ( t ; ) | 

f N^^^ Pglh-p | | | | p ( t l ) - P( tp) | | . 

Let L,. = min. L(i,j) and L. = max, L(i,j) and note that 
— 1 J J- d 

< < ~ 
L,^ = Range p^ = L^. Then 

2 "-1 , , 2 
(3) i p ( t ^ ) - p ( t : ) i = I (P i ( tE) - P i ( t p ) ) 

" i=o 1=0 

m-1 

= I (Li - kf 
i=o 

= I|L - L||2, where 

L = (L^ \_{i andL= (L^ L„_i). 

Also, note that by the Schwarz integral inequality and Lemma 1*, 

(1*) N^^^ PglF-p(6^l = (NPg||h-p(e)||2}̂ ^̂  S C. 

Inequalities (3) and (U), when substituted into (2), imply 

N-"-̂ ^ A =Clf-Ii||. Hence, (i) is proved. 
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(ii) Let I. = {a|6^ = i), i = 0,...,m-l. Let r^ be the rank 

of the covariance matrix of h = (h„ h ,) under the distribution 

""-̂  kj 
P., i=0,...,m-l. Fix i, j, k, k < j and a e Î ,̂ and let d = L f(u) 

and 1 , = t / \ (u) t (u). Let h - E. = TZ with Z an orthonormal 
"J h^'^^k h,j ^ a 

basis for the subspace of Lg(P.) generated by the functions h. - 6 , 

where E. = (6 ,...,6 , .) and 6.. is the Kronecker 6. Abbreviate 
1 O l m - 1 , 1 Jc.1 

|)r'd||~ T'd to g, where T' is the transpose of the matrix T. 

Observe that Z., as a linear combination of the functions h, in 

L2(P^), is in l^^i?^), i. = l,...,r^. Also, since iZ^\l = 1 r̂ } 

is a set of orthonormal functions in L (P.), we have. 

(5) 

and. 

(6) 

PiCz.g)^ = l|gil ' 

Piilzll ' = r . . 

We note that since i, . - [O < (h,d) = (h-h ,d)], i + i 4 0 
kj ' •" kj Jk ' 

implies r. > 0 and T'd ^ 0. Suppose I + I. ^ 0 and Np. > 1. 
1 kj jk i 

Then, conditionally on u, x and all x , ui ̂  I., the sum 

Lî o.tuEl.'̂ '̂ iû 'S) falls into an interval of length |(Z(x )-Z(u),g)| . 

Hence, a B-E approximation to this conditional probability of H, . + J.. 
kj jk 

yields abound, (Np̂ -l)"''"'̂ {̂i'(o) | (Z(x )-Z(u),g)|+ 26P^ | (Z,g) | ̂ } , 

after simplification by (5), Taking the bound on this conditional 

probability to be 0 if H + 1,̂ ^ = 0 and 1 if Np. = 1 and weakening the 

Pg X P̂  integral in this bound by the Schwarz r.-space and integral in­

equalities, the triangle inequality, and (6) used to obtain 

PePi|(z(x^) - Z(U),g)| 5 PgPjZ(xJ - Z(U)|| S 2|P.||Z||2|'^' = 2 r.'^' , 

> 
we have if Np- = 1 , 
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where C^ = $'(0) 2(r̂ )-'-''̂  + 2BPjz|p. If r^ = 0, (7) holds with 

Cĵ  = 0 and 0 ' <» = 0. 

Observe that inequality (2.ll*) implies that 

N^/2 p^ min {l.lNp. - if^/^ C. } = p.^^^1 + C^)^^^ for all i. 

Hence, since J]?" p. = 1, we have by the Schwarz m-space inequality 

(8) f"' N^^'p, min {l,|Hpi-l|-^/^C.} ̂  (m + |i cf)^'^ . 
i=o 

Noting that BJJ ̂  N"^ I^^^ I^^^ 11̂ 6̂  ̂ e^B^^^j * 'jk>' "' ''" '''̂ ' 

(7) and (8) imply 

(9) N ^ / \ < = g ) M . n + ||c|l2)̂ /2 , 

kj 
where L = max. . , II,- 1 • 

Equation (9) implies (ii), which together with (i) and inequality 

(1) completes the proof. 

3. Sufficient Conditions for a Theorem of Higher Order. 

In this section we shall examine certain sufficient conditions 

which allow a generalized analogue of Theorem 1* in Chapter II. Two 

types of sufficient conditions are imposed: a certain continuity 

assumption relating to the class of probability measures {P̂ ^ n̂i-1̂ * 

and a condition on the m x n component loss matrix (L(i,j)). The 

continuity assumption is a "natural" extension of the sufficient 

condition (II) of Theorem 1* in Chapter II, That an additional condition 

is needed on the loss matrix will be illustrated by two examples. 

Consider the following example, which illustrates that, regardless 

of what continuity assumptions are imposed on a class tPo>•••'^m-l^ 
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satisfying a mild regularity assumption (see (9) below), a uniform 

-1/2 convergence theorem of rate faster than 0(N~ ) is unobtainable for 

a certain loss matrix. 

Example. Let n = 2 and h = ii^o'''''\-l'' ^ ^ ^̂ '̂ '̂  ^"^^^ ^i ^ ^3^^i' 

for i,j = 0,...,m-l. Let I = (I^.,IQ,I_) be a proper partition of 

10 / \ / 10 / , / , , 

{0,...,m-l} according to L^ >, = or < 0. Define w^(v) = (L h(v),f(u)). 

Note that w £ L,(P.) for i = 0,...,m-l. Assume there exists i E I^, 

i' z 1^ [J 1_ such that, 

(9) P^, [°i^(Wy) > 0] > 0. 

Without loss of generality, we may assume i' £ I^. Existence of a 

class {P ,...,P ,} satisfying (9) can be assured by taking common 
o m-1 

support S = {u|f.(u) > 0} for all i, and noting that under this 

assumption condition (9) is equivalent to L ^ L , 

1/2 Consider now 8 E Si such that 0 < Y i N p.-iS.!" and 
OD ' — i — 

p. = 1 - p., for all N sufficiently large. Fix a such that 6 = i' 

and define the set E = {)^ w (x ) < 0). Define s^(u) = Np. o.̂ (w ) 
1=1 a " 1 1 u 

+ (Np^,-1) 0^, Cw^) and Kjj(u) = -s;;-̂ (u) {w^(u) + (Np.,-l) hf, f^,(u)} . 

Then, by a B-E approximation applied conditionally on X = u, we have 

(10) Pg[E|\ = u] ̂  Y*(u) , 

Where Yjj(u) = (̂Kjj(u)) - ^s^h^) 1,^/gJw^ - Pg^wJ^. 
I 2 1 ? ? 

Note that on {u o. (v ) > 0), N s„(u)^^o. (w ) > 0, and hence 
1 u N 1 u 

10 . / N -1 

u 
since Iim Yĵ  = (Iim Ŷ j) and J( •) is an increasing function, we have 

on this set lis.'̂ î (")jC(u), where C(u) = -'5 L , f.,(u) o:-'-(w ). Thus, 

(11) Iim Yjj(u) = J(C(u)) on {o.^(w ) > 0} 
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Therefore, Fatou's Lemma, (10), and (ll) imply, 

(12) Iim Pg[E] = Iim P̂ iPgliilx̂  = uJ 

^ P., Iim P. [E|X = U] = C, 

where C = P^, [a^^Cwy) > O] J(C(U)) > 0. 

Finally, since L'̂ '̂ is optimal against both i and i', we see that 

(13) Iim N-'-/̂ {R(8,tl) - ,|,(p(8))} 

a 

= limN^/2p^_ li?Pe[^] 

>= y L̂ ? C> 0. 

Inequality (13) contradicts the possibility of a uniform 

-1/2 
convergence theorem of order greater than 0(M ) in the general 

finite compound decision problem with arbitrary loss matrix. 

Consider now the following condition (C) on the loss matrix 

(L(i,j)). Let I, . = {ilL̂ "* = 0}. The condition is: 
KJ 1 

(C) For all j ,k (j#k) and i E I.^y there exists an 

l = «,(i,j,k) such that L̂ *̂  > 0 and L̂ *̂̂  = 0 on 1^.. 

Note that condition (C) is violated in the example above for 

all i E I . With this added restriction (C) we will obtain a uniform 
o 

convergence theorem for the regret risk function of 0(H ). The 

sufficiency of (C),together with the continuity assumption (II') 

(or II") belowjwill be seen in the proof of Theorem 6. A certain 

degree of necessity for this condition is shown by the above example 

and is demonstrated more clearly by the example in section 3.5. 

We mention here three important cases in which (C) is satisfied. 

All three cases are concerned with the discrimination problem in which 
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m=n and L(i,j)=0 or >0 according as i=j or i^j. The three cases are: 

(i) Let m = 2 or 3. This case reduces to the problem of 

Chapter II for m = 2. 

(ii) Define L(i,j) = a(l-6..), where 5.. is the Kronecker 6. 
ij 1J 

Condition (C) is satisfied by choosing Jl(i,j,k) = i. 

(iii) Let w(t) be a strictly increasing function on [0,">) with 

w(o) = 0. Define L(i,j) = w(|i-j|). Since L*̂"̂  = 0 for j ?* k implies 

i > j and i < k or i < j and i > k, condition (C) is satisfied by 

choosing £(i,j,k) = i. 

We now examine the sufficient condition to be imposed on the 
class {P ,..,,P ,}. Let y be some dominating measure for the P.'s o m-1 1 

and define f = (f f ^ ) , where f. is the density of P. with 
o' ' m-1 ' 1 •' 1 

respect to p. Let P.f denote the probability measure induced 

under the measurable transformation u ->• f(u). Note that P.f" is a 
1 

probability measure on (R°',(S'°), where 6" is the a-field of Borel 

sets on Euclidean m-space. Let X denote m-dimensional Lebesgue 
m ^ 

measure. Define B. in S'^, j = 0,.,.,m-l as 

(ll*) B. = B^(v,a,b) 5 {Q = (v,f) = a, 0%^^^, oSf.%, iĵ j}, 

where | v | = l , a = 0 , b = 0 . Consider now the following condition on 

<Po.---.Vl> = 

(II') There exists a measure p dominating the P.'s and finite 

constants K, K' such that P.f"-'-[B.] = K'X [B ] for all 
1 J m j' 

i,j,v,a, and b with v.(b-K) = 0 and B. of the form (ll*). 
J J 

This condition is by no means an obvious generalization of 

condition (II) of Theorem 3. however, let P. = y"""'- P and let 
'- i=o i 

Z^(u) be the density of P̂  with respect to P. . Define Z as the 
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measurable transformation u -• (Z^(u),... ,Ẑ _j_(u)) and P^Z the 

induced measure on (R""-"", (0'""•'•) under z". Let X^_^ denote m-1 

dimensional Lebesque measure. Then we can state the following "natural" 

extension of condition (II) as: 

(II") For i = 0,...,m-l, P.Z " is absolutely continuous with 

respect to X , and for some K" < ~, 
^ m-1 

d P.I "•'• 

m-1 

Condition (II') is seen to be equivalent to condition (II) of 

Chapter II by observing for m = 2, P. [z'(U) < z] = P^[Z(U) > C(z)], 

where C(z) = {b + (a-b)z}""'"b(l-z) and Z(u) is defined by (2.2). 

It can now be seen that condition (II') generalizes condition (II) 

in the sense that condition (II"), which is equivalent to (II) for 

m = 2, implies (II') when y = P. in (II'). For the proof of this 

statement, see Appendix 1. 

We now give an example which fulfills condition (II'). 

Example. Let U = (U U ,) be the generic random variable for 

the component problem. Define, for i = 0,...,m-l, the probability 

measures P. having densities with respect to X given by f^(u) = 2 u^ 

if u e [0,1]". If we let P.f" (f ,...,f^_^) be the distribution 

function corresponding to the induced probability P.f , then 

P.f"l(f f J = 2"'""̂ ^̂  iJ^ll f,) f. on f £ [0,2]". Hence, P f"̂  
1 o m-1 J-o J 1 1 

is absolutely continuous with respect to X and has X^-density 

2""" f. on [0,2], which is bounded by 2~ "*"'• on [0,2]". Therefore, 

with K' = 2" '"'̂•'•, P.f"''"[B] S K' X [B] for all Borel sets B on R"; 
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and, hence, in particular for the sets B. of condition (II') with 
J 

K = 2. 

This example may be generalized. Let P. be a probability measure 

on m-space with X -density g.(u). Choose, if possible, a measure P 
m l 

such that P << y << X with h(u) as the X -density of y and such that 
1 m m 

u + f(u) = g(u)/h(u) is a 1-1 map from {u|f(u) i O) into [0,K] having 

Jacobian J(u(f)/f) with h(u(f)) J(u(f)/f) bounded by K^. Then, on 

the range of f, we have 

i^r-, dP. f"-"" 
'^^' - ^ (f f J = f.(u(f))h(u(f))J(u(f)/f) 

d X o m-1 1 
m 

But (l6) implies that P.f""''[B] = K K X [B] for all Borel sets B on 

R ; and hence, in particular for the sets B. of condition (II'). 
0 

la the example given above, P = X , h(u) = 1, and g.(u) = f.(u) 

= 2 u. for u E [0,1] with K = 2 and K = 2" . Another example in 

which p plays a more dominant role is with h(u) = 2 Irf̂  u., g.(u) = 

2°" 3 u. n"^ u., and f.(u) = 2 " 3 u. for u £ [0,l]°, and with 

KQ = 1*" 3"" and K = 2"^ 3. 

1*. Uniform Convergence Theorem of 0 ( N " ). 

Before stating and proving Theorem 6, we shall prove the 

following useful lemma. 

Lemma 6. 

For sets B = B (v,a,b) of the form (lU), X [B.] = a b K""^ 
J j ' m J 

if V, < 1. 
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Proof. Let i ?i j be such that \v^\ = 1. The lemma follows from 

the transformation y = (v,f) and ŷ ^ = f^, k ^ H, which has unit 

Jacobian. 

Theorem 6. 

If (C) and (II') hold and h E (̂  such that |h^(u)| = M a.e. p 

for i = 0,...,m-l, then R(6,t^) - i|i(p(e)) = 0 ( N " ) uniformly in 6 E S2̂  

Proof. We show in inequality (l) that: (i) Ajj = 0 ( N " ) uniformly 

in 8 £ Si and (ii) B,, = 0 ( N " ) uniformly in 6 E Si . 

(i) By noting ((p. - h". )L., t-(u) - t'(u)) is the difference 

of two simple functions, we see that the first term on the right-hand 

side of (l) can be written as 

(17) AJJ = P g ( p - h , p ( t l ) > fi { t '^) ) ^ ^^^^ Djj(k,j). 

m-1 
_!, \T^i 

Where Djj(k,j) = Pg I _ ^Pi-l^i'V Vh,k*"^ S.J*"^" " " ^ ° " * ^°^^ 

of generality, we may assume p. > 0 for all i = 0,...,m-l in Ajj, 

since, if p^ = 0, the term PiCP^tt-) - P^Ct')) = 0 could be 

eliminated prior to use of Corollary 1 in (1). 

Fix i, j , k, and observe that for i = 0,...,m-l, 

(18) tl (u) t' (u) 
h.k P.J j_ ^. 
i[0i(pL^^f(u))Sm^LK||p-h|lJLli,I p.Lff,Cu)<I.^ p,L,Jf.(u)]. 

kj l̂J 

Consider the following two cases. 

Case 1. Let max. , p. = m"""". Bound the second factor on the 
"̂  kj ^ 

right-hand side of (l8) by unity and note that condition (II') and 

I , kjI-1 . kj 
Lemma 6 applied to the remaining factor with v - |pL | pL , 

a = IPL'"'^!""^ m^/^ L K ||p-h|| and b = K yields 
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(19) P.tl ^(U) t' ,(U) = a bK"""^ K' 
1 h,K P»J 

= K^ l|p-h|| . 

where K = m^^^ L L!^ K " K' with L„ = min {[L^^ | | L^^ ^ 0} . 
m 0 U 1 ,j ,it 1 1 

Case 2. Let 0 < max.,, p. < m" . Then there exists an 

u £ I such that p = m~ . Therefore, by condition (C), L., = 0 
kj -^it) 1 

1 SL 
on I and L'̂  > 0 for some i. For such an i , we have 

kj tu 

I. , p.LJ^f.(u) = p L^^f (u) = 0 and \ L ' ^ \ = [hf \ L L"^ for i^, .. 
'•IEI -̂ 1 1 1 '̂ (J lu U) ' 1 ' ' 1 ' U KJ 

kj 

Hence, the second factor on the right-hand side of inequality (18) is 

bounded by [0 = p L-̂ f̂ (u) = (m-l)L L " KlpL '̂ l] . With this bound 
01 to w U 

in (18), condition (II') and Lemma 6 applied to B (v,a,b) with 
1 tt) 

v = IpL^'-Jr^ P L ' ^ J , a = m̂ LK | | p -h | | |pL^-5 f ^ and 

b = (p L'̂ '̂  )""'"(m-l) L L"'' ' K |pL^"^l , we have 
til tl) 0 

(20) P. t'- Au) f .(U) = ab K " " ^ K ' 
1 h , k p , j 

K ; iiP-h|i . 

where K' = m (m-l)(L L~ ) K^ K' is obtained by noting that 

p L^' = m " ^ L , . u) u) 0 

Observing t h a t K' = K for m = 2 , s u b s t i t u t e the bound in (20) m m 

in to the term D ( k , j ) for both case 1 and case 2 t o obta in with the 

aid of the Schwarz m-space i n e q u a l i t y D ( k , j ) = m L K' Pg||h-p|| . 

Hence, Lemma I4 and equa l i ty (17) imply A^ = {n(n-l)m"'"'^LK'C^}N""'', 

from whence ( i ) fol lows, 

( i i ) Fix i , j , k and define E = {O = (HL'^'^ , f (u)) = ot N " ^ } , 

< — £i 
Fĵ  = {0 = (hL , f ( u ) ) } , i = 0 , . , , , m - l , and a = 2mMLK. Note t h a t 

by the d e f i n i t i o n of t ' , , (u) and t ' . (u) we have t ' , , (u) t ' . (u) 

= [E] [Fj,] for a = 1 , . , , ,K , Hence, 
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^''^ ""' I«£I.̂ 8' V 6 '̂(a) ̂ ^-^ ';j-^ 

1 a ah ,K 

S Ip.Lfl PgP, [E] [FJ. 

We now consider bounding the right-hand side of (21) in two cases. 

Case 1. Let max , p = m" . Define the set A={|lh'-p|| 4(2m)" }. 
^ kj 

Note that on A, |hL "̂  | = L_(2m)" , and hence by condition (II') and 

Lemma 6 we have, P„ P . [ E ] [ A ] = P.[A]P.[E] = (2m L"-"- K'"""'- K'aJ N"-"". 

D 1 D 1 O ± 

Also, we have by Tchebichev's inequality and Lemma k, 

Pg(l - [A]) = 1* m^ Pg ||h-p||̂  = l*(mC)^ n'^. Hence, with a^ = 

2m L"V'""'"K'a + l*(mC)^, it follows that 

(22) |p.L^J| PgP.([E][Fj) = p.La^ N"^. 

Case 2. Let max .,- p. < m" . Then there exists an w E I . 

> -1 I'J ' 
such that p = m . By condition (C), there exists an J. = S.(tu,j,k) 

(i) 

such that L'̂''' > 0 and L^^ = 0 on I, .. 
ti) i' kj 

Observe that lp.L^J| = p.-h". | L + l^ L'̂ ''|. Then, since (II') 
"^1 1 ' ' 1 1' 

and Lemma 6 imply, for [Ii L'''̂  | > 0, P^[E] = a^ |h L̂ '̂  I""'' N"""- where 

a = K"" K'a , we have 

(23) IP^L^-^I Pi([E][F^]) = L|p.-h.l P.([E][Fj^]) + a^ N ' ^ 

With il=Jl(tD,j,k) and observing that l^,^ h^L^'^f^(u)5mLLQ'''K|hL^''| 

— l?.i 1/2 — ^J 
and that y. ^ (h.-p. )L. "̂ f. ( u ) ^ LK llp-hll on F„, we obtain the set 

'•lEl . 1 1 1 1 M^ 11 £> 

inclusion, F̂ ^ C {0%^L^''f^(u)i(mLQ-'-|hL^"'|+m-^''^||p-h || )LK} . Let 

G = {|hL'̂ ''| < N"'"'''^). Then, since |p L"'''| i m'-^ L^ we have on 

G, (II') and Lemma 6 implying by the above set inclusion P^[Fj^] = 

(mL"""" iC'^^^ + m^'^ ||p-h || ) mLL""'"K\', while on the complement of G, 
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P.[E] = K""-'- K'â N"-"-̂ .̂ Hence, we have in the term P. ([E][F ]) for 
1 1 1 Jt, 

Jl = ^(tD,j,k), 

(21*) P.([E][FJ) = a^ N"^/^ + a^ ||p-h|| , 

where a,̂  = K""^ K' {(m L " ^ ) ^ KL + a^} and a^ = m^'^ L L"^ K" K'. 

To complete the proof for the term B̂ j, substitute (2l*) into the 

first term on the right-hand side of (23), sum the P integral of this 

bound plus the bound in (22) over all i ,j ,k,( jj^k), and use Schwarz' 

™"i — < 1/2 — 
inequality to bound I |p.-h. | = m ||p-h|| ' The resulting 

i-o 
inequality from the definition of B and inequality (21) is 

(25) BJJ = n(n-l) {(La^ + mo^) H"-"-

+ m l / 2 ^ ( a ^ N - ^ / 2 p ^ | | ^ _ p | | ^ ^ ^ Pg | |h -p | | 2 ) } , 

From (25) we see that B = 0(N" ) uniformly in 8 E Sî , since by 

Schwarz' inequality and Lemma 1*, N P lh-p|| = N C and 

—• p < o _i 
P ||h-p|| = C H" . Therefore, (ii) is proved, which together with 

(i) and inequality (l) completes the proof. 

5. Counter-example to Theorem 6 when (C) is Violated. 

The example given in this section shows that even in the 

discrimination case (L(i,j) > o r = 0 a s i ^ j o r i = j , and m = n) and 

with condition (II') satisfied, a violation of condition (C) prohibits 

-1/2 a uniform convergence theorem of order greater than 0(N ). This 

example together with the first example in section 3.3 exhibits that 

condition (C), although maybe not a necessary condition for Theorem 6, 

is at least not an unwarranted assumption on the loss matrix (L(i,j)). 
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Example. Let m = n = 1* and assume {PQ P3} satisfy condition (II'). 

Let h E c? with |h.(u)| = M a.e. p for i = 0 3. Suppose the 

component loss matrix is given by: 

Note that in this example all conditions of Theorem 6 are met 

except condition (C) which is violated when (k,j) = (0,3) or (3,0). 

As will be seen, the conclusion of Theorem 6 is not true for this 

example. 

To facilitate construction of the example, choose distributions 

with densities f.(u) having common support set S = {u|f^(u) > 0} 

for i = 0,1,2,3, and such that ^ f2(u) = f^(u) = 2 f2(u) on S. 

Furthermore, assume that K = f^(u) = K on S for some constants 

K, K, 0 < K < K < "• 

To see that this class of examples is non-empty, let f^(u) = 

3"-'-2û  on [1,2]'* with p = Xĵ , K=3'"'"2,K=3"''"1*. Then, S = [1,2] and 

u = 2u = l*u on S. That condition (II') is satisfied follows by 

analogy with the example satisfying (II') given in section 3.3 with m=lt. 

Now choose 6' E Sî  such that for N sufficiently large, 

0 < Y = N^/^ p^(e') = 6 < », P3(8') = 0, and 2pg(e') + £ = p^(e') 

= 3p (6') - £ , 0 < £ < I . By the choice of 6', t^(g,)^Q(u) = 1 a.e.p. 

Hence, R(e',ti) - *(p(e')) = N'^ I"^^ Pg. I^^^ L^° ^h.k^^^- ''°^^ 

that condition (C) is satisfied for k = 1,2 and hence by the proof 

of Theorem 6 and the fact that p (6') = 0, we see 
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(26) R(6',tl) - ,l.(p(e')) = N"^ I^^J ^6<^'h,3^\'> * °'""̂ >-

Fix ct £ I and define E = [h'QfQ(X̂ ) - F f (X^) < O]. Conditionally 

on X = u, apply a B-E approximation to the sum L , (h.(X )f (u) -

h (X^)f (u)) and let o(u) = min^^^ ̂  ^ o^(hQ(V)fQ(u) -h2(V)f2(u)) > 0 

on S to obtain, 

(27) Iim Pgi[E |X^ = u] = S(-6fQ(u) o"-'-(u)) on S. 

Now, observe the following pointwise inequalities: 

(28) 0 = [E] - t- -(X ) = 1 - [(h,L3^f(X )) < 0] [h,L^^f(X„) < 0] 

= [(h,L3^f(X^)) = 0] + [(h,L32f(X^)) = 0]. 

Then, with (h,L^^f(X^)) = ||h-p(8')|| 12 K + (p( 6') ,L^^f (X^)) for k= 1,2, 

while our choice of the f.'s and 8' implies (p( 8') ,L'' f (X ))SEf, = EK , 
1 a 1 

we see that (28) together with Tchebichev's inequality and Lemma 1* 

imply 

(29) 0 = Pg,{[E]-- tjĵ 3(X̂ )} = 2 Pg,[|h-p(6')i| 12 K = E <] 5 CQ N"^, 

where a^ = 288 (KC)^ (EK)"^. 

Thus, we have P_tl ,(X ) = P.[E] + 0(N""'") from whence it follows 
w n,J ct 0 

by (26) and (27) that 

(29) liE""^^^ (R(e',tj) - <>(p(8')) 

= y Iim P^Pg, [E|X^ = u] 

= Y a^ > 0 , 

where a^ = P^ J(-6fQ(U) a"-'-(U)) > 0. 

Equation (29) demonstrates that a uniform convergence theorem 

-1/2 
of order better than 0(N ) is impossible in this discrimination 

example wnere (C) is violated. 



CHAPTER IV 

THE TWO-DECISION COMPOUND TESTING PROBLEM 
IN THE PRESENCE OF A NUISANCE PARAMETER 

1. Introduction. 

We now give a formulation of the testing problem considered in 

Chapter II for testing between the parameter values 6 = 0 and 1 in 

the presence of an unknown nuisance parameter x = (x^,...,x^), s = 1. 

Let T be a set in R^ with non-empty interior. Let (/̂  = {Pg .jlfÊ } ̂ e 

a family of distributions for 6 = 0,1. We shall assume throughout 

this chapter the existence of a o-finite measure v dominating the 

families (/g, 6 = 0,1. 

Consider now the compound problem of making N decisions, 

'8 = 0 or 1', based on N independent observations X , a - 1 M, 

where X is distributed as P„ for fixed x £ T. Let the loss 

01 ê ,x 
matrix for the component problem be given by: 

/O b 

where b > 0 represents loss due to deciding P^ ̂  when P̂ ^̂  is the 

case and a > 0 the loss for deciding P^ ̂  when P^^^ is true. 

If X is known, the problem reduces to that of Chapter II. 

However, we here consider the case where the vector parameter x is 

unknown but assumed to be the same for all N problems. We shall give 

a procedure which first estimates x and e" based on X^ Xjj and then 

adopts a compound procedure similar to that given by (2.9) in 

Chapter II with x replaced by its estimate. 

53. 
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At this point it seems appropriate to remark on the above 

formulation of the problem. Suppose we temporarily consider the 

problem where the set T is a finite set of, say, k elements, 

X ... X . Then the problem reduces to that of Chapter III by 
o' ' k-1 

letting m = 2k with the class (P = {PQ.•••.Pm-il ^eing given by 

P = P and P „ = P, for 1 = 0,...,k-l, and by choosing a 
I 0,Xj, k+H 1,1^ 

2k X 2 loss matrix with L(i,0) = 0 or a according as i < k or = k 

and L(i,l) = 0 or b according as i = k or < k, where decision j, 

for j = 0,1, corresponds to saying '6 = j'. In fact, in this case 

X can vary over T from component problem to component problem. Hence, 

we arrive at no new problem unless T is at least an infinite set. 

The selection of T as a set in R with non-empty interior will be 

seen in the proofs to follow. The assumption that x is the same 

for all N problems permits the obtaining of estimates of x which 

have good asymptotic properties as N + ~, 

With the formulation of T as a set in R with non-empty interior 

and X the same for all N decision problems, the earlier results do 

not yield a solution. It is this problem to which we now devote our 

attention. We will give asymptotic solutiors (in the sense of regret 

risk convergence) in Theorems 7-11, 

Before stating the theorems specifically, a few preliminaries 

are necessary. Let v be the assumed o-finite dominating measure for 

the families P , 8 = 0 or 1. Fix x e T, and denote P„ ,P, and 
8 0,x l,x 

Pg .J = \: , ] ^ Pg .J hy P^, P^, and Pg respectively. Define 
' a' 

dP. 
(2) g^(u) = - ^ (u) for i = 0,1. 
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Let p = aP + bP as in Chapter II and note we may proceed exactly 

as in equations (2,l) - (2.8). We shall suppress x in all these 

equations except (2.2), where 

(3) Z(u,x) = bfy(u) = {ag^(u) + hg^{u)]~^ bgQ(u). 

Consider now a scalar function h and a vector function 

k = (k.,...,k ) such that h(U) is an unbiased estimate of 6 = 0 or 1 

and k(U) is an unbiased estimate of x; that is, 

(1*) P. h(U) = i for i = 0,1, 

P. k(U) = x for i = 0,1. 

By (1*), we then form unbiased estimates of 6 and x based on the 

observations X , ...,X for all N, 6 E Si_̂  by defining the averages 

(5) h(X) = N"^ ll^^ h(X^), 

k(X) = N"^ ll^^ k(Xj . 

Observe that by (1*), Pgh(X) = ? and Pgk'(X) = x. For kernel functions 

h, k = (kj_ kg) such that h, i.. z Lg(Pî ) for i = 0,1; j=l s, 

define a^{h) = P. (h(U)-i )̂  and o^(k.) = P.(k (U) - i f . For p £ [0,1], 

define a2(k.) = p o^(k.) + (l-p) On'^i^' ̂ "^ -̂ '̂̂ "̂ ̂ ^ ^^'°"'' ^ 
p J 1 J u J 

and its analogue for k, we have 

(6) Pjh-0)2 = B2(h)ir\ P ||k-x||̂  = C2 N"l , 

where o2(h) = max.̂ Q̂ -ĵ  {o^(h)^ and C^ = max̂ ĝ̂ -ĵ  V.^^ "i'^'j'-

From the above formulation, it now becomes natural to consider 

the compound procedure formed by substituting h(X) and k(X) for 6 and 

X respectively in the non-randomized simple procedure given by (2,5) 

with 15- = 0, However, since z(u,x) is only defined if x is in T, we 
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must "truncate" k(X) to T. Hence, let k denote a specified truncation 

of ic to T such that k* = k" if I T E T and if k ^ T, then "k* is a point in T 

within a distance of N"''' of a minimizer of ||k - x || on the closure of 

the set T. A constructive method of truncating when T is a convex set 

is given in Appendix 2. 

We are now able to present a well-defined non-simple, non­

randomized procedure tj, _ = (t^ _ (x ),...,ti -,(xjj)) with coordinate 

h,k* h,k* ' 

functions 

(7) '̂ff k«'^ot^ = 1 or 0 as Z(x^,k*) < or £ h", a = 1,...,N. 

The risk of this procedure under P will be denoted by R(8,tr - ^ ) . 

Under certain regularity assumptions this procedure will be shown to 

have good, uniform in 8 £ fi , asymptotic properties in the sense of 

regret risk convergence. 

Certain assumptions will be needed in the proofs of Theorems 7-11, 

Let X £ T be fixed. 

Assumption (A ): There exist functions h and k = (k ,,,,,k ) 

such that (It) holds and h, k. z L (P.) for i = 0,1; j = l,,,.,s. 

Assumption (A ): The covariance matrix of (h,k ,.,,,k ) under 

P., denoted by V., is of rank s + 1, i = 0,1, 

When they exist, define 

( 8 ) ^ : ( u . T ) = | ^ 

r," , V 32 
and Z (u,x) = jk^"' ' 3x.3x, 

J k X 

If s = 1, denote Z| and Z ' by Z and Z respectively. Also, let 

3, = ix' E h^l Ix' - T|| < 6} 
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Assumption (B ): For some & = S(x) > 0 and for almost all 

u(v), Z(u,x) admits continuous first-order partial derivatives (rela­

tive to T)for non-isolated points X'E S D T. Furthermore, there 

exists a function M E \(P^) for i = 0,1 such that |Z'(u,x')| = 

M,(u) a.e. V on S, (̂  T for j = l,...,s. 
1 13 

Assumption (B ): For some 5 = 6(x) > 0 and for almost all 

u(v), Z(u,x) admits continuous second-order partial derivatives (rela­

tive to T) for non-isolated points x' E S O T. Furthermore, 

P. |Z'.(u,x)| < «> and there exists a function M. E L, (P. ) for i = 0,1 

such that |Z'.'ĵ (u,x')| = M2(u) a.e. v on S^ n T for j ,k = 1 s. 

2. A Convergence Theorem in the Presence of a Nuisance Parameter. 

Theorem 7. 

Let X be any interior point of T for which assumptions (A^), 

(A^), and (B^) hold. Then, R(6,tJ--,) - iti(?) = 0(N"̂ -̂ ''̂ '̂̂ )̂ for 

E > 0. 

Proof. Since xis an interior point of T, we assume, without loss of 

generality, that the 6 of assumption (B^) is such that S^ C T. 

Identify t = t in (1.15) of Lemma 5 to obtain, 
^ h,k* 

(9) R(6,tl ) 
h,k* 

P„P t (U)} {a6PgP,(l-tj^^3^.(U))+b(l-6)PgPQt__ 

.,-1 N"-^ y J p „ p , ( t _ _ (u) - 1 _ , , , . 
^"^1 « ^ h,k* p " ' , P " ' 

,(u)) 

+ b H"-̂  y , P„Pn(tl, , , ̂ ,(U) - t l _ (U)) , 
iacl^ e 0 J7(a)_^(a)* j^^^, 

where I. = {o|e = i}, i = 0,1. Let the three terms on the right-hand 

side of (9) be denoted by Â ,̂ Bjj, and Cjj respectively. 
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— -1/2 

We establish the theorem by showing that: (i) A.j - ((1(6) = 0(N ) 

uniformly in 8 E Si^, and (ii) Bĵ  and Cjj are of 0(N ) , £ > 0, 

uniformly in 8 e Sî . 

(i) Define Aj' = Pg{aeP^(l-ti(U)) + bd-e) P|^tl(U)} , where 

-(u) = 1 or 0 as Z(u,x) < or = ii. Then express A - it>(e) as t h 

(10) Aĵ  - *(6) = Aĵ  - •(6) + Aĵ  - A ; . 

Observe that with p replacing p' in equality (2.12) and part (i) 

of the proof of Theorem 2, we see by (6) that 

(11) A.'. - ((.(8) = H"-"-̂ ^ (a+b) -(h). 

Next consider the term A^ - A' in (lO), Again by a cancellation 

argument of the type used to develop (2,12), we may write 

(12) AJJ - A^ = Pg p {(?-Z(u,x)) ([E] - [F]) , 

where E = {Z(u,x) < h = Z(u,k*)} and F = {Z(u,k*) < h = Z(u,x)) , 

Under the P. x y integral subtract and add Z(u,k*) ([E] - [F]) and 

bound (e-Z(u,k*)) ([E]-[F]) by |h-e| and (Z(u,k*) - Z(u,x)) ([E] - [F]) 

by |z(u,k*) - Z(u,x)| to obtain 

(13) ^ - !̂i = ^̂ ""̂ ^ Pglii-^l + PgP|z(U,k*) - Z(U,x)| . 

In the second term on the right-hand side of (13) partition the 

space under the P integral into G = {||k-x|| < 6} and its complement. 

By Assumption (B ) and our choice of &, expand Z(u,k*) = Z(u,k) 
n 

on G, about Z(u,x) in a second-order Taylor expansion and bound Z 

by M to obtain 
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(ll*) |z(u,k*) - Z(u,x)| 

< r.^^ |Sj-Tjl |Z^(u,x)| +|||k-x|pM2(u). 

Use the Schwarz s-space inequality in the P x p integral of the first 

terra on the right-hand side of (ll*) and inequality (6) in the P x p 

integral of the both terms to obtain 

(15) PgP {|z(U,k*) - Z(U,x)| [G^]] 

= ir^^2 ^^ ̂ ^ ̂  1 jj-1 (,2 ^ (,ĵ (jjjj ̂  

where a^ = [r.^^ (y |Z'(U,x ) | )2} ̂  . 

Since |Z(u,k*) - Z(u,x)| = 1, we have by Tchebichev's inequality 

and (6), 

(16) Pg y |Z(U,k*) - Z(U,x)| (1 - [G^]) 

= (a+b) 6-2 Pg||k-x||2 

= (a+b) 6 '̂  C^ N -̂  

Hence, (15) and (I6) together with the Schwarz inequality and (6) 

used to obtain Pg |h-e"| = N"''''̂  o(h) imply by inequality (13) that 

(17) Aĵ  - A^ = if^^^ (Ca+b) 5(h) + a^ cJ + 0(N"^) 

uniformly in 6 E Sî . 

Substitution of (11) and (17) into (10) completes the proof of (i). 
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(ii) We shall now bound the term Bjj in (9). Without loss of 

generality we assume N? S 1. Let 0 < £ < | be given. Fix acl̂ ^ and 

define the sets E = {||k-x||£N"'̂ /2"̂ "̂ >) and E^=(||k<"Lx I^N"'^/^) (̂ "̂ .̂ 

We shall need the following pointwise inequality: 

(18) t__ (u) - t__, J (u) 
h,k* h,P"^* 

5 [Z{u,I*)<h] mu,!^^^*) Sir^"^](l-[E])(1-[EJ) + [E] + [EJ, 

We now bound the P. x P, integral of the right-hand side of (18), 
8 1 

Observe that by a change of variable and an elementary set 

inclusion, we have 

(19) PgPi'tî l "• [\]) = 2 Pg[E] 

5 2 IPJ|k.-.| = s"i/2 ĵ "(l/2)(l-E) 
j = l « ^ j' 

by a B-E normal approximation to each of the summands on the right of 

(19), we have for j = l,.,,,s, 

(20) PgUk.-x.l ^ s"l/2jj-d/2 )(!-£) J 

5 2 {1- J(s-l''2,e/2 -Ij^^jj 
8 J 

-l/P 
+ 2 li N ' b.(6) , 

where b (¥) = a^2(k.){?P |k.(U)-x.|^ + (l-"e) P |k. (U)-x . | ̂ }, 
J J . * . J J ^ J J 

We bound from above the first term in (20) by noting that 

1 -«s"^''2 M^/2 -l(j, )) < -J _ 5(3-1/2 .JE/2 ^-1^ g.^^^ j.̂ ^ all 0 E Si 
6 J J 
2 > 2 

d = max {o (k )} = o-(k.). Then, by the exponential tail 
J iu,i i j ° J 

inequality 1 -J(x) = 5'(0) x" exp {- p- x }, for x > 0, (see Feller 

[3], p, 166), we have 
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(21) 1 - |(s"^^2 N̂ ''̂  "î 'l'j)) 

= J'(0) s^/^ N"^/2 d. exp {-(1/2) s"^ dT^ H^} , 
J J 

Define b. = max r ,, b.(p). The second term on the right-hand side 
J p£[0,l] J 

of (20) is then 0(2 6 b N" ' ) uniformly in 6 E S2„, since b. (8) = b. 
J J J 

for all 6 £ Si , This bound asymptotically dominates the exponential 

bound in (21) and when it is substituted with (21) into (20) for 

j = l,,..,s we see that by inequality (19), 

- 1 / 2 
(22) P . P d [ E ] + [ £ ] ) = 0(b„N ' ) , uniformly in 6 £ fi , where 

W X CX (J '"' 

0 ^ J = l J 

To bound the P„ x P, integral of the first term on the right-hand 
U 1 

side of (18), choose N = N (T) sufficiently large such that 

N <6, Then, by assumptions (b ), we may on the set 

E () E (c denoting complement) expand Z(u,k*) = Z(u,k) and 

Z(u,k ) = Z(u,k ) about x in second-order Taylor expansions and 

bound them from below and above as follows: 

(23) Z(u,k) = Z(u,x) + I (k,-x,) z:(u,x) - ̂ "^""^ M (u) 
j=j_ J J J 

and, Z(u.k̂ °'') = Z(u,x) + f (k̂ .̂ '-x.) z:(u,x) + ̂  N"̂ '"'̂  M„(U), 

Define, w(xĵ ) = (h(Xj_) - 8̂ ,̂ k̂ (Xj_) - i^ I's'̂ J.̂  " '^l^' ^ ° ^ 

i = 1,...,N, and y(u) = ll,-Z|(u,x),... ,-Z^(u,x)), Inequalities (23) 

applied to the first term on the right of (l8) together with some 

algebraic manipulation now imply that this terra is bounded from above 

by the function [F^^], where 
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{2h) [F ] = [N(Z(u,x)-8) - |N^M2(U) - (y(u),w(x^) + l^^^^ w(xj^)) 

< L T OJ iyi^lM^,)) = N(z(u,x) - 8) + | N ' H (u) 

- (y(u), w(u) + Iĵ ĵ w(x^))], 
o 

Condition the Pg x Pj_ integral of [F^] on u, x^, and x̂ ,̂ «• £ I^ 

and apply a B-E approximation, obtaining an upper bound on the 

conditional probability given by 

(25) min {l,(we-l)"-^^2 (J'(0){N'^a^(u) + a2(u,x^)} + 2i,a^W))\ , 

where a^(u) =o-^((y(u) ,w))M2(u), a.^{v.,:^^=<r^{kj{^) ,w)) |(y(u) ,w(u)-w(X|^)) | 

and a (u) = a^2( (y(u) ,w)) Pj_| (y(u) ,w) | ̂ , with Oj_(t) denoting the 

variance of t(V) under P , Assume for the moment that a , i= 1,2,3 are 

integral with respect to P x P , Then, 
a 

(26) Pg^lt^'a^ = ""̂ ^ {l,(Ne-l)"^''2 (N̂ ĉt* + a*)} , 

where a* = i'(0)P^a^(U) and a* = 4'(0)P^P^a2(U,V) + 2BP^a2(U). 

Recalling the definition of B and the fact that the function 

[F ] bounds the first term on the right-hand side of (18), we see 

that equations (22) and (26) substituted into the P x P integral 

of inequality (18) and summed over all a E I, imply 

(27) BJJ = a \f^'%P''^'^ ^In {l,(Ne-l)"^''2 (N'̂ al̂ +a*)} + O(bQ)] , 

Inequality (2.lit) when substituted into (27) with C = H^a* + a^ and 

p = 8 yields 

(28) B,, = 0(N"^-'-''2'*^) uniformly in 8 e Si -
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I t must be r e c a l l e d t h a t equat ion (28) was der ived under the 

assumption t h a t a. for i = 1 ,2 ,3 were i n t e g r a b l e with r e spec t t o 

P, X P„ , a £ l , , Observe t h a t 
1 8 1 

a 

(29) Cj_2((y(u),w)) = y(u) V^ y ' ( u ) 

= y(u) ID r ' y ' (u) , 

where T is an orthogonal matrix, D a diagonal matrix with diagonal 

elements d., i = l,,..,s+l. Let v = y(u)r and X̂^ = min^d^. 

Then, 

s+1 
(30) VDV '=1 v^ X* = ||y(u)||2 X*. 

1=1 

Therefore, weakening by the Schwarz inequality for s+1 space in the 

numerators of a„(u,x ) and a_(u) and bounding the denominators from 
2 ' a 3 

below by (29) and (30), we have 

(31) °2'"'^^ =11"^"' - "'̂ â ll (^I)'^^' 

a3(u) 5p^||„||3(x*)"3/2 ^ 

Also, note that (29) and (30) imply 

(32) a^(u) = M2(u) (X*)"^''^ 

since ||y(u)i2 = 1+1^=1^2^^".^)}^ - 1- Integrability of a. for i=l,2,3 

now follows from (3l) and (32) by observing that M^E L^(P^) by assump­

tion (B JJ|W||EL (Pj_) by assumptions (A^) and the c^-inequality (Lô eve 

[9], p.155), while assumption (Ag) guarantees X*>0. This completes 

the proof that BJJ=0(N"^^''2^'''') „„iformly in 6 E Sî . A similar argument 

shows that Cjj=0(N"'^/2'*') uniformly in 8 £ Si„, and (ii) is proved. 
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The proof is now established by (i), (ii), and equality (9). 

+ E 

Please note that the order here obtained has the factor N , 

0 < E < —. We were unable, in general, to remove this factor and 

obtain convergence rates as good as those of Theorems 2 and 5. 

However, in two later results (Theorems 10 and 11 below) two 

interesting and rather revealing cases where this factor can be 

eliminated are given. 

3. Examples for Theorem 7. 

Three examples satisfying Theorem 7 are given. 

s 
Example 1, 

Let T be the subset of R̂  given by T ={(x ,,,,,x )|I._,x. < 
1 s J 1 J 

^ 1 -(S+1)Y), X. > 0}, where Y is a fixea constant such that 
^ J 

0 < Y "̂  (s+l) , Note that T is a non-empty open convex subset of 

R , Fix X e T and let the generic random variable U = (U ,,,,,U„ x 

have the multinomial distribution for i = 0, 1, P. {U = u} = 

2s+2 1^+1 u. " /• 
n! (11.̂  u.!)"^ "-n''^- + iY ) '^(T. + ( I - D Y ) ^^ •^} , where 
2s+2 s+1 
y u. = n and I x. = — (l - (S+1)Y). We show that assumptions 
j=l •^ j=l J -̂  
(A ), (A ) and (B ) of Theorem 7 are satisfied. 

Define the functions, 

s+1 
(33) h(u) = {Y(S+1)}-^ (n"^ y u. - i) + i 

'•J = l J 2 2 

k^(u) = (2n)-^ (û  + U^^^^J) - I Y for j = 1 s. 
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Then, since P.U. = n(x. + iy) and P.U = n(x + (l-i)Y), for 
1 J J 1 s+x+j J 

i = 0,1; j = l,,,,,s, it follows that P.h(U) = i and P k (U) = x . 
1 1 J J 

Assumption (A ) now follows from boundedness of |h(u)| and |k.(u)| 

for j = l,.,.,s by - ( { Y ( S + 1 ) } " + l) and ̂ ( 1 - Y ) respectively. 

Assumption (A ) is satisfied since {h, k ,...,k } forms a linearly 

independent set of functions in L (P.) for i = 0,1. 

To verify conditions (B ), we first define 

(31*) *(u.x) = p^(u) iPg(u)}"^ = n.^^ (1 nij"-^) ^ ^^-^^^ . 
It 

Let il'. and i);. be the first- and second-order partials of i)y with 
J Jk 

respect to x. and x.,x respectively. The following relationships 
J J k 

then hold: 

(35) *! = Y * C. , 

V = ^ * '^jk * ^ ĵ«k> • 

where C.(u,x) = {T^^^(X^^^ +Y)}"^ ( V I " " 2 S + 2 ' " ^^j'^j*^^*'^ ''^j"": 

"̂'̂ ]̂k= ^^j/^V 

Therefore, by expressing Z(u,x) = (aijj+b) b, differentiating 

as indicated below and substituting equations (35) in the resulting 

derivatives, we have for j,k = l,.,,,s, 

(36) Z'.(u,x) = -ab Y H- C,(ai|J+b)" , 

z" (u,x) = ab Y iJ* (ai|j+b)"^ { Y C.C. (aiji-b) - (ai()+b) C } . 
jk J K ji^ 

nence, observing that 2 ab i,{a.iij+hT^ < 1, we obtain from (36), 

(37) |Z'(u,x)| = I Y Ujl . 

1Z;'J^(U,X)M|Y (Ykj.J - U'J) • 

s+l+j-^ 
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From the definitions of t;. and (,. it is readily seen that 
J JK 

^]k = (^+1 - -2S+2' f^s+l'^s+l ^ ^>''' (2^3,, ̂  Y) ^ *j,(--U3,i,^) 

{x.(x. + Y ) ) ( 2 X. + Y ) , where 6. is the Kronecker &. Hence, since 
J J J JK 

|u.-u .| = n and (2x. + Y ) = 1-SY, for j = 1 s+1, we have for 
J s+l+j J 

J.k = 1 s, 

(38) Ujl = n (qd^^^) + q(x.)) 

and 

\l.'.^\ = nd-SY) (q^(T3^i) + q^(x,)) , 

where q(x) = [x(x + y)j > 0 for x > 0, 

The first inequalities of (37) and (38) yield 

(39) P^|Z^(u,x)| = I n Y ^(Tg^^) + <I(T.)} < ~, To complete 

the verification of assumption (B ) define 6 = 6(x) = — m i n 

{^j^.-.-.tg. s" x^_^^} , where l^* x = -(1 - ( S + 1 ) Y ) . Define 

the hyperplanes H. = {x E R | X. = 0 ) , j = 1 s and 
J J 

H^^^ = {x £ R I I._-,x. = - (1 - ( S + 1 ) Y ) } . These s+1 hyperplanes 

intersected with the closure of T form the boundary of T, The distance 

-1/2 between li. and x is given by x. for j = l,,,,,s and by s x for 

j = s+1. Hence S C T since T is convex and the radius i5 is half the 

distance of x to the closest boundary point of T in the bounding 

hyperplanes H., j = l,.,,,s+l. 

We now define the function M„. Observe that if x' = (x',,,,,x') 
2 1' ' s 

1 1 ^ •"• • 1 

E S , then X > - x for j = l,,..,s+l, where y._, x. = -(l - ( S + 1 ) Y ) . 

Hence, with q(x) a strictly decreasing function on {0,«) ve have 

' 1 
IIT ) < q(- T ) for J = l,...,s+l. Thus, define M^(u) = 

n Y q^ {2 n Y + ( I - S Y ) } , where q = q (x) = max._ n(i T ), 

"^ O J X,.«,,S + X d J 
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Then, by (37) and (38) we see |Ẑ 'ĵ (u,x') 1= M2(u) a.e. v for 

i.k = 1..,. s if x' £ S,. This together with (39) completes the ,). . . ^ 

verification of (B ). 

We have now shown that assumptions (A ), (A ), and (B^) are 

met for any x £ T and hence Theorem 7 is valid for Example 1 with 

any fixed x in T. 

We now give two examples in which s = 1. 

Example 2. 

Let U be the generic name for the X 's. With s = 1 and 

T = (0,=°), fix X £ T. The distribution of U under P̂  is normal with 

mean i and variance x for i = 0,1. Represent K^{u) by k(u) and 

define 

(1*0) h(u) = u , k(u) = u -u. 

Then, P.h(U) = i and P.k(U) = x for i=0,l, and fixed x. Hence, 

assumption (A ) is satisfied, since all absolute moments P^|u| , 

k = 1,2,... are finite for i = 0,1. Assumption (Ag) is satisfied 

since h and k are linearly independent and non-degenerate in 

L^(P^) for i = 0,1. 

To see that (B ) is satisfied, let v be Lebesgue measure, and 

note that for i = 0,1, g.(u) ={2^^)-^^^ exp {- (2x)"^ (u-i)^} , 

Hence, (3) implies 

(Itl) Z(u,x) = b {a exp x" (u - g) + b } 

We see that Z has first and second continuous partials with respect 

to X on (0,<°) which are given by 
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(1*21 Z'(u.x) = 2a^sU^ _ 
x(a exp ?(u,x) + b exp { - 5 ( U , T ) } ) 

and 

(̂ 3) z"( u , x ) = - " '̂ "̂  '̂ '"•̂ ^ g-
T (a exp C(U,T) + b exp {- C ( U , T ) } ) 

l*ab C (u.x) (a exp c(u.x) - b exp {- i;(u.t)}) 
2 3 
X (a exp c(u,x) + b exp {- ;(u,x)}) 

where c(u,x) = (2x)~ (u - - ) , 

Observe that for t real, |t|{a exp t+b exp(-t)} = rmax{a ,b" } 

and t {a exp t + b exp(-t)} = — max \a. ,b J, Hence, from (1*2) and 

(lt3) we obtain 

(Ult) |Z'(u,x)| = x'^ c^, 

|z"(u.x)| = ltx"2 c^, 

where c = max {a b, ab }. The two inequalities of (1*1*) together 

1 -2 
with 6 = —land Up(u) = l6 c x imply assumption (B ), To see this, 

suppose X' £S^=((l/2)x,(3/2)x), Then, by (Itlt), |z"(u,x')| = It(x')"^ c 

< 16 c X . Therefore, assumptions (A ), (A ), and (B ) are valid in 

Example 2 for fixed x z (0,~) and hence Theorem 7 holds for such a x. 

Example 3. 

In the a component decision problem, let X = (X X ). 
a al' 'an 

> 
n = 2 be n independent random variables, each distributed as normal 

with mean 6^ = 0 or 1, and variance x E T = (O,"). With U as the 

generic name for tne X 's, define 



69. 

-1 r" (1*5) h(u) = u = n" I u , 
i=l 

1 " -P 
k(u) = (n-l)"-" Ii=i(v'' • 

where k(u) denotes k (u) of Theorem 7. 

Then, h(u) and k(u) are unbiased estimates of i and x under P. for 

i = 0,1 and fixed x in (0,">). Defining v as n-dimensional Lebesgue 

measure, an analysis similar to that of Example 2 shows that conditions 

(A ), (A ) and (B„) of Theorem 7 are satisfied for such a x. Hence, 

Tneorem 7 holds for Example 3 with h(u) and k(u) defined by (1*5). 

Please note that in Example 3, we have "bunching" of observations 

> 

on each component problem; that is, we make n, n = 2, independent 

observations for each component problem. This "bunching" is what 

allows obtaining the stronger result for this example via Theorem 10 

below. 

li. Uniform Theorems in the Parameter x . 

Two theorems are presented in which convergence of the regret 

risk function is made uniform in x E C (as well as in 8 E Si_̂ ), where 

C is a suitably chosen compact subset of T. Also, it is shown that, 

in Example 3 of section 1*.3, uniformity in x on (0,") cannot be obtained 

for a wide class of sequences 8 in Sî . 

Theorem 8. 

Let T be a non-empty open convex set in R̂  and let C be a 

compact subset of T. Assume that (A^), (A^), and (B̂ ) hold for all 

X £ T and for X £ C; i = 0,1; j = 1 s we have: 
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( i ) P | Z ! ( U . x ) | = A < « , 
J- , I J 

(ii) P. M (U) = M < <" , where M (u) exists by (B^) , 

(iii) P. |h(U)p = H < », P. |k.(U)|^ = K < « , 
1,x 1,x J 

> 
(iv) ^f .^ = ^* ^ 0, where X* is the minimum eigenvalue of V 

^.^ i.T i,x 

Then, for £ > 0, R(e, tL-J - if(?) = 0(N"'''''^'"^'^) uniformly in 6 £ Si 
h,k* " 

and X £ C. 

Proof. Since C is compact and T forms an open covering of C, there 

exists a 6 > 0 such that for every x z C, S (x) C T. With 6 > 0, 

which is now independent of x E C, proceed exactly as in the proof 

of Theorem 7. To complete the proof we need only show that the bounds 

obtained in the proof of Theorem 7 are uniform in x E C. 

Assumption (iii) provides uniform upper bounds in (11) and (16), 

while assumptions (i), (ii), and (iii) yield uniform upper bounds for 

the two terms on the right-hand side of (15), Next observe that 

condition (iii) furnishes a uniform upper bound for d., j = l,,,.,s 
J 

in (21), Also, (iii) and (iv) assure that b in (22) is uniformly 

bounded from above on C, Finally, we need show that P x P 
l,x 8̂ ,x 

integrals of a., i = 1,2,3 are bounded from above on C, By assumption 

(iv), -̂ĵ  .J. = X* > 0, for i = 0,1, x E C; while conditions (ii) and 

(iii) imply, respectively, that P. M (U) and P. ||w(U)|| are 
1 ,X 2 1 ,x 

uniformly bounded from above for i = 0,1, x £ C. Therefore, by applying 
the norm triangle inequality in the first inequality of (31) and 

bounding X* from below by A* in (31) and (32), we have that the 
.^. t 
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01. for i = 1 2 3 have uniformly bounded integrals in C with respect 

*° ̂ ,x ^ Pe ,x' " ' h-
a" 

Since all bounds in the proof of Theorem 7 (the bounds for the 

term C being similar) have been shown to be independent of x E C, 
N 

the proof is complete. 

The conditions (i) - (iv) of Theorem 8 are satisfied by the 

three examples given after Theorem 7. We shall verify this statement 

for Example 1 only. 

Note that q(x.) for j = 1 s+1 is a continuous function on 
J 

T and hence by compactness of C there exists a constant 

q, = max._, J.-I .r^r l^''J. Hence with A = Yn q, and 

1 J—1, . . . ,S+ljXEt.. J + 
M^ = nYq,^ {2nY + (l-sy)), we have by (37) and (38), |z'(u,x)| = A 
2 1 J 

and b", (u.x)I = M^ on C. Thus, (i) and (ii) are satisfied, 
'̂ jk 2 

Assumption (iii) is satisfied by uniform boundedness of h(u) and k(u) 

given by (33). Assumption (iv) follows since X*^^ = minj||y||^^j y^i,x^' 

is a continuous function of x for i = 0,1. We have thus established 

that Theorem 8 holds for Example 1. Detailed analysis of Examples 2 

and 3 yield the same result. 

We now give a theorem which states under what conditions we can 

obtain uniform convergence of the regret risk function when s = 1 and 

T = [ t t ] , t < t , i s a closed, bounded interval on the real line. 

We shall here truncate k to k* in T, where k* is given by 

(l46) k*(X) = t^, k(X), or tg as k(X) < t^, £ [t^.t^] or > t^. 
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Theorem 9. 

Let T = [t ,t ] be a non-empty, closed, bounded interval of 

the real line. Assume that (A ), (A ), and (B ) nold for x E T and 

that for X £ T, i = 0,1, 

(i) P. ^ |Z'(U,x)|2 S A<» , 
1 .^ 

(ii) P^ ^ M^{\]) = Mg < »>, where U^iu) exists by (B^), 

(iii) P. |h(U)i^ = H < «, P. |k(U)|^ = K < " , 
1 ,x 1. ̂  

(iv) ^* = ^* ^ 0, where X* is the minimum eigenvalue of V. 
i,x i,x i,x 

Then, for E > 0 , R(8,t.! - ) - (^{I) = 0(N"^''"'^''^^) uniformly in 8 £ Si 
h,k* ~ 

and X £ T. 

Proof. Fix X £ T. As in the proof of Theorem 7, write R(e,tL - ) = 
h,k* 

Ajj + B + C , where A, B ,and C are three terms on the right-hand 

side of (9). 

Observe that a second-order Taylor expansion (relative to T) 

of Z(u,k*) about Z(u,x) implies 

(1*7) Pgy |z(U,x) - Z(u,k*)| 

= Pg|k - x|y |Z'(U,x)|+ iPg(k - x)2p(M2(u)), 

since |k* - x | = |k - x | , Now express Ajj - <^(6) as in (10) and bound 

AjJi - iti(8) and Aĵ  - Â'j by inequalities (ll) and (13) respectively. 

Substitute inequality (li7) into the second term on the right-hand 

side of (13), weaken by the Schwarz inequality and (6) in 

Pg |h-8| = a(h)N"-'- and Pg|k - x|= C-j N"''-''̂  and substitute the last 

two inequalities into the first term on the right-hand side of (13) 

and into (1*7), respectively. The resulting inequality is 
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1/2 
(1*8) AJJ - tti(e) = (2(a+b) a(h) + Ĉ p |Z'(U,x ) | }N' 

+ I C^ p(M2(U))N"^. 

Since assumptions (i), (ii) and (iii) provide uniform bounds on T for 

P1Z'(U,X) 1 ,p(M (U)) and o(h) and C., respectively, (1*8) implies 

(1*9) AJJ - ((>(e) = 0(N""'"'^) uniformly in 6 £ Sî  and x £ T. 

We now prove that B is of 0(N ), 0 < E < —, uniformly in 

- > 
8 £ Si and x E T. We assume without loss of generality that NS = 1. 

Fix a £ I, and consider inequality (l8). To bound the P. x P., integral 
1 8 1 

of the first term on the right-hand side of (18) expand Z(u,k*) and 

Z(u,k* ) on the set E ^^ E in a second-order Taylor expansion 

about X and note that |k» - k»'"'| = N"""" |k(x^) - k(u) | to obtain, 

(50) [Z(u,k*) < h] [Z(u,k*'°^ = h'"'] (1 - [E]) (1-[E^]) 

N(Z(u,x) - 6) + N(k» - x) Z'(u,x) - |N^M 2 ( U ) 

- (l^UJ-1) -I,,ih(x,) <l,el,,il^a'^^^£'"^> 
o 1 

= N(Z(u,x) - 6) + N(k» -X ) Z'(u,x) + |N^M 2 ( U ) 

- (h(u) - 1) - Iĵ ĵ h(Xĵ ) + |k(x^) - k(u)||z'(u,x)| 
o 

Let [F ] denote the right-hand side of (50). Partition the Pg x P^ 

integral of [F ] into the sets {k = k»}, {k > k*} and {k < ic*) . 

On the set {k = k*}, write k* = k in [F^] and enlarge the domain of 

integration by taking [k = k*] = 1. With y(u) = (1,-Z(u,x)) and 

w(X ) = (h(X )-l, k(Xĵ )-x) apply the B-E normal approximation to 

the sum of the N? - 1 random variables (y(u), v{X^)), IL z 1^, I ^ a, 

conditionally on u, x^, x̂ ,̂ 5, e I^, as in developing (25) and (26). 



The resulting upper bound for PgP,[F ] [k" = k"*] is then given by the 

bound in (26) where the second term of the minimization is increased 

by the term 

(51) (Ne'-l)"̂ ''̂ *'(0)P P |k(X )-k(U))| |Z'(U,x)| o"^((y(U),w)), 
a " 

g 
where the P integral is on U, the ^. integral on X^ and a^{{y{\i) ,v)) 

is for each u, the variance of (y(u),w(V)) under P on V. Inequalities 

— 1/2 * —1/2 
(29) and (30) imply that the term (51) is = (N8-1) *'(0)(X ) 

P P |k(X )-k(U)|. Since X. is uniformly bounded from below by 
1 D^ a 1 .X 

assumption (iv) and since P ||w(U)|| and P |k(U)| and P M (U) are uni­

formly bounded from above by assumptions (iii) and (ii) respectively, 

this inequality together with (31) and (32) substituted into (26) is 

seen to yield 

(52) Pe^lt^a^ [k = k*] = 0(min {1,(H~-1)"-'-''̂  N^}) 

uniformly in x E T. 

On the set {k < k*}, write k* = t in [F ] and enlarge the domain 

of integration under the P. x P, integral by taking [k < k*] = 1. 
o 1 

Then apply the B-E normal approximation theorem to the sum of the 

(M6-1) random variables h(X ) - 1, S. ^ a, J. e I , conditionally on 

u, X , x„, S, E I to obtain * a' £' o 

(53) ^e^lt^a^ f^ " *̂̂  

= min |̂ l,(Ne-l)"̂ 2̂ [o-j"̂ (h) §'(0) {s''p^U^(V) 

+ P̂ Pg (|h(X̂ ) - h(U)| + |k(X_̂ ) - k(U)| |Z'(U,x)|)} 
a 

+ o^"3(h) P̂  |h(U) - 1|3]) , 
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The Schwarz integral inequality applied twice in the P, x Pg term, 
01 

together with uniformly bounding all terms of (53) in accord with 

assumptions (i), (ii), (iii) and (iv), yields the result 

(5I+) PgPĵ  [F^] [k < k*] = 0(min {l,(Ne-l)"^^^N^}) 

uniformly in x E T. A similar analysis shows that 

(55) ^e^l^^a^ ^̂  " '^*^ " 0(min{l,(Ne-l)"^/2N^}) 

uniformly in x E T. 

Observe that assumptions (iii) and (iv) imply that 

b = sup ô̂ 'f) "^ °°. where b = b (x) is the bound in (22), while 

(iii) implies d = sup d^(x) < ~, for d^(x) in (2l). Hence 

inequalities (I8), (22), (50), (52), (5I*). and (55) now combine to 

yield 

(56) PePi<^h,k»'"^ - ̂ h,k(«)*'"'^ = °*'°'" li,(Ne-i)"^/V}) 

uniformly in x £ T. 

Finally, summing (56) over for all a E I^ and recalling the 

definition of Bjj, we see that inequality (2.11*) with C = N 

implies B =0(N"^-'-^^^'^'^) uniformly in 8 E Si_̂  and x E T. The same is 

true for the term Cjj . Hence, these results for Bjj and Cjj, (1*9) and 

(9) now complete the proof. 

An example will now be given to illustrate the distinction 

between Theorem 7 and uniform results on compact sets as given in 

Theorem 8 andTheorem 9. Specifically, we will use Example 3 of 

section 1*.3 and show that for this example we can choose a sequence 
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X + "> such that the sequence of regret risk functions l^u(6,t-—) -

iti,.(5) + (,{0 > 0 as N + •» for all 6 £ Si such that 8 + 5, 5 ?' (a+b)" b 
N "^ 

as N + ». Hence, for this example uniformity in x on the non-compact 

set T = (0,") is impossible. 

Let X = N''"'̂  for some 6 > 0 and let 8 E S2 be such that 
N 

i + 5, C ̂  (a+b)" b as N + <». Observe that for Example 3 of 1*.3, 

•jj(e) = aePj_[q(e) = x"^ n(U - i)] + bd-6) Pg[q(e) < x'^ n(U - |) ], 

— - 1 — —1/2 1/2 ~ 
where q(e) = log {(aS)" b(l-e)j. Hence, since Xjj n (U-i) is 

N(0, 1 ) under P. for i = 0,1, we have 

(57) <»jj(e) = a 6{$((XJ^ n-^P'^ q(e) - ^{nT-^P^^)} 

+ b(l-6) {l-J((Xjj n'^P^^ q(e) + i(nx-j^)^''2)} . 

Noting that q(5) < or > 0 according as C > or < (a+b) b, we see 

that with X = N"'''**and 8 + C, 5 j' (a+b)" b as N + ~, equation (57) 

implies 

(58) '•'ŵ ®' "̂  b(l-£;) or a5 according as C > or < (a+b)~ b. 

We now examine R (8,t- -) as N + ", Observe that for Example 3 

-, , — - 1 v-h 

h(X^) = Xĵ  = n I X^, and hence. 

(59) H,(e.t^L_-) = air I^^^^Pg[NZ(X^,k) - \ - l^^^ X^] 

' ™'' LEl/e[̂ ^̂ '̂ a«'̂ > " \ < U^a h^ ' 

where Z(X^,k) = b(a exp -[nk" (X - -)] + b ) " , Observe that 

(n(N-l)" xĵ  ) Ij,/a'̂ ji - ^P is K(0,1) under Pg and is independent 

of X^,k(X^) k(Xjj), where k(Xĵ ) = (n-1)"^ C=l'^!lj " ^H^^ ^''°" ̂ '*̂ '" 

Hence, we may integrate with respect to the joint marginal distribution 
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of the N-1 variables X , J. # ot in each of the summands of (59) to 

obtain, 

(60) Rjj(6,t̂ -̂̂ ) 

= ^""^ L E I Pg{«(tn(M-l)"^-^] {NZ(X^,k) - N6 - X^ + 8^))] , 

T f 1 1 ^ / 2 _ _ _ -. 
+ bN"-̂  Î ĵ Pe ^^ " ̂  ({n(N-l)"-'x;;-'} {NZ(X^,k) - N8 - X^ + 8^})j 

o ' 

Observe that by our choice of x = N , 6 > 0, we can conclude that 

since lZ(X^,k) - e| = 1, the variable {n(N-l)"-'-x̂ }̂-̂ ''̂  {KZ(X^.k) - Ne} +0 

in probability as N + ", for each o = 1,,..,N. Also, since 

(nxJJ^)^/^ (X^ - 6̂ ) is N(0,1), we have (n(N-l)"\-^)^^^ (X^ " ^a' "" ° 

in probability for a = 1,...,N. Hence, the sum of these two variables 

given by the variable 

1/2 

•N ^ a' 

for each = 1,...,N. 

We now use (61) to obtain a limiting value for (60). Since a 

continuous function of a random variable converging in probability to a 

constant converges in probability to the corresponding functional value 

of that constant, we see from (6I), continuity of J, the bounded conver­

gence theorem, and the Toeplitz Lemma (see Loeve, [9], p. 238) that the 

limiting value of (60) is given by 

(62) limjj^RjjO.t;^^) 

= aCf(O) + b(l-^)J(0) = |{aC + b(l-5)} • 

Equations (58) and (62) yield as a limit for the regret risk function 

the expression 

(61) {n(N-l)"-̂ x"-'-} {NZ(X^,k) - N8 - X^ + 6̂ } ->• 0 in probability 
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(63) limjj^{Rjj(e,tL_-) - *jj(e)}= |(a+b) U-(a+b)"^b| = c(C) > 0, 

where 6 + 55^ (a+b)""''b and x„ = N''''̂ *, 6 > 0. 

N 

This completes the example which shows that uniformity in 6 E Sî  

and X £ T is unobtainable for Example 3 where T = (O,") is non-compact. 

That this is truly a contradiction to regret risk convergence uniform 

in both 6 E Si_̂  and x E T follows from the observation: If uniformity 

held on both Q^ and T, then for the diagonal sequence (6 ,x ) , N = 1,2,.,,, 

we would have R (e,tr- -) - <t'„(9) •* 0. which is contradicted by (63) 

for Example 3 of section 1*,3, 

5. Specific Results when s = 1. 

Let s = 1 and T be an open interval of the real line. Denote x 

by X and k, by k, and fix x £ T. We give two cases in which the factor 

N can be eliminated in the convergence rate of Theorem J. 

Theorem 10, 

Let (A^), (Ag), and (B^) hold. If M £ L (P.) and if h and k are 

- 1/2 
independent under P. for i = 0,1, then R(e,tl 7-̂ ) - ((.(e) = 0(N ) 

uniformly in 6 E Si . 

Proof. Choose 6 > 0 such that S, C T and express R(6,t^ T „ ) = A^+B +Cjj 

-1/2 
as in Theorem 7. Observe that A^-i>(6)=0(N ) uniformly in 8 £ Si__̂  

as in Theorem 7 with a first-order Taylor expansion in (ll*). 

To obtain a bound for B , assume Ne = 1, fix a E I , and note 

that 
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^''^ *E,k.("> - ̂ 5(a).i^(a)*^"> 

= [NZ(u,k») - h(x^) < l^^^ h(x^) S NZ(u,k^"**) - h(u)]. 

Let [F ] denote the right-hand side of (61*). If we condition on 

u, x^, x^, ^ ^ ^o ^'^^ l̂ '̂ jj,)' ^ - 1.....N in the P x P integral of 

[F ], then the B-E theorem yields, by independence of h and k, a bound 

for this conditional probability given by 

(65) (N?-l)"^/^{*'(0){o^(h)}"^{|h(u)-h(x^)|+N|Z(u,k»)-Z(u,k^"'*)|}+bj^} 

where b^ = 2B{a^(h)}"^ P-̂ |h(U) - 1^. 

In the second term on the right—hand side of (65) expand Z(u,k*) 

about Z(u,k ) in a first-order Taylor expansion on 

E = {|k» - x| < |<5} n {|k'"̂ * _ T| < |6} to obtain 

N|z(u,k*) - Z(u,k(°^*)| = |k(u) - k(x^)|M^(u). On the complement of 

E bound lz(u,k*) - Z(u,k )| by unity and note that a change of 

variable, Tchebichev's inequality and (6) imply PgPid - [E]) = 

2Pg[)k» - x| = |6] = 8.5"̂  Pg(k-x)^ = 86"^C^2 N"^. Hence, 

(66) NPgP^|z(U,k*)-Z(U,k^"'»)| = Pg P^|k(U)-k(X^)|M^(U)+86-^C^. 

Finally, weakening by the Schwarz inequality to obtain 

Pg P^|k(U) - k(X^)iM^(U) = {2 P^M^^WP^^ o^(k) = bg and 
a 

P P lh(U) - h(X )| = 2''"̂ ^ 0, (h), inequalities (65) and (66) imply 
6 1' a ' 1 
a 

(67) Pe^i^^a^ = ""'" {i.(Me-i)'^''^ ^3^ 

where ̂
^ = i<io}i/^'^oi\^n^,-^°-\^\*\' 
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Recalling the definition of B and summing the P„ x P integral of 

inequality (61*) for all a £ I , we have, by inequality (67) and (2.14) 

with C = b and p = 6, 

(68) N^/2 < ^(^,,2jl/2 _ 
N j 

-1/2 
Hence,by (68), a = 0(N ) uniformly in 6 £ Sî , A similar argument 

holds for C , and Theorem 10 is proved. 

Note that in Example 3 following Theorem 7 the selection of 

n, n = 2, independent observations per problem furnish estimates 

h and k, given by (1*5), satisfying the independence condition of 

Theorem 10. 

Theorem 11, 

Let (B ) hold and assume there exists a function k z L (P.) 

g 
satisfying (U) such that o. (k) > 0 for i = 0,1, For almost all 

u(v), let Z(u,x) be a strictly monotone function on T, Then, the 

- 1/2 
regret risk function R(e,t'j- ) - t()(8) = 0 ( N " ' ) uniformly in 6 E Si 

8.K « 

Proof, Choose 6 of assumption (B, ) such that S. C T. Identify 
1 0 

t = t!- ̂ . in Lemma 5 to obtain 

(69) R(e.t^^i^,) 

= (aePgP^(l-tL^-,(U)) + b(l-i)PgP^t^^J.,(U)} 

^ -"'"laET Vl'H,k*(") -t' (a),(")) 
J- D,k 

^^«''U/8V^l^-(a),'")"H,k*("))-
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Let A*, B ,and C denote the three terms on the right-hand side of 

(69). 

Note tnat here A^ - t»(e) is equal to the Â j - Aj' term in the 

proof of Theorem 7 with h replaced by e". Hence, replacing h by 6 

in (12) and (13) in the proof of Theorem 7, we obtain 

(70) A^ - tj(6) = Pgp|Z(U,k*) - Z(U,x)| . 

In (70) partition the space under the Pg integral into D̂  ={|k*- x| < 6} 

and its complement. For fixed u, expand Z(u,'k*) about Z(u,x) on D̂  

in a first-order Taylor expansion to obtain Pg|z(u,k*) - Z(u,x)| = 

P |k-x|M (u) = N"-"-̂ ^ C M (U), where the last inequality follows from 

the Schwarz integral inequality and (6). Bound |Z(u,k») - Z(u,x)| 

by unity on the complement of D^ and note that Tchebichev's inequality 

and (6) imply Pgd-lD^]) = S"^ C^^ N"^. Hence, from (70) we obtain, 

(71) Aj* - *(e) = N-^/2 c^^(M^(u)) + 6-2 C^2 „ - l . 

- > To bound the term B , assume Ne = 1 and f ix a £ I-j The 

monotonicity assumption on Z implies that a unique inverse function 

of Z(u,'). denoted of Z-\ exists on the range of Z(u,-) for almost 

all u(v). Hence, 

(72) t^^-.(u) - tl. („).(-) = [Fj, 

where F = {k<Z"''-(e) = ic'"'} or {k > Ẑ -'-(e) S k'"̂ } according as 

Z(u,.) is strictly increasing or decreasing on T. 

For fixed u, x^, x^, I z I^, the sum l^^j^s^^J^i^P " ^) i" F„ 

falls into an interval of length |k(xj - k(u)l. Hence a B-E approxi­

mation applied to the Pg x P^ of [Fj conditionally on u, x^, and 
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X , H E I , together with weakening the resulting bound by 

Pg Pj^lk(x^) - k(U)| = 2-̂ ''2 o^(k), yields 
a 

(73) P o P j F J = min {l,(Ne-l)"^^2 C} , 

where C = •p^'^ S'(0) + 2B{o^(k)}"^ P^|k(U)-xp. 

Hence, recalling the definition of B and summing the Pg x P integral 

of inequality (72) for all o E I , (73) and (2.lit) imply 

(7I*) N-'-/̂  BJJ = ad+C^)-'-^^ for all 8 E Sî -

A similar result holds for C , which together with (69), (71), and 

(71*) completes the proof. 

It is interesting to note that Theorem 11 combines with Theorem 2 

of Chapter II to state that if 6 or_ x is known for the 2 x 2 compound 

testing problem, then under suitable assumptions (see Theorem 2 and 

-1/2 
Theorem 11) a regret risk convergence of order 0(N- ) uniformly in 

6 £ Sî  can be obtained. However, the convergence rate in Theorem 7 

has an additional factor of N , E > 0, when both e" and x are unknown 

and need to be estimated. Attempts to remove the factor N ^ when 

both e and x are unknown were unsuccessful except in Theorem 10. 



SUMMARY 

This thesis has demonstrated that compound decision procedures 

which are asymptotically optimal in the sense of regret risk convergence 

are obtainable for a variety of compound decision problems. The 

existence of such procedures was heuristically argued by Robbins in 

[10] and substantiated in the compound testing problem for two 

distributions by Hannan and Robbins in [7]. Motivated by these two 

papers, we proved convergence theorems for the regret risk function 

of non-simple, non-randomized procedures which are "Bayes" against 

estimates h of the empirical distribution on il. The existence and 

structure of the estimates h are given by Theorem 1 and (l.ll). 

Three cases were considered: (i) the compound testing problem 

between two specified distributions; (ii) the general m x n compound 

decision problem; and (iii) the compound testing problem between two 

specified families of distributions Indexed by a common nuisance 

parameter. 

Theorems 2, 5, and 7 give the basic regret risk convergence 

theorems for the three respective cases. Theorem 5 is of particular 

interest since it treats the original problem of Hannan and 

Robbins (Theorem 1*, [7]) in the general m x n compound decision 

problem. Theorems 2 and 5 have uniform (in 6 E iij convergence rates 

of 0(N"-'-^2), while Theorem 7 has the slightly slower rate of 

0(1)"^/^^), E > 0, caused by added estimation of the nuisance param­

eter. With the nuisance parameter in an open interval of the real 

line, removal of the factor N*^ is established in Theorem 10, if h 

83. 
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is independent of the estimate of the nuisance parameter, and in 

Theorem 11, if the empirical distribution on Si = {0,1} is known. 

Theorems 3 and 1* reveal that, in the compound testing problem 

-1/2 
for two distributions, uniform convergence rates of o(N ) and 

0 ( N ) are attained if appropriate continuity conditions are imposed 

on P and P . Note that Theorem 1* states conditions under which the 

procedure (2.9) has, regardless of the size of N, a sum of expected 

losses for the N problems within a uniform constant of the minimum 

expected sum of losses among all simple procedures. Theorem 6 

generalizes the result of Theorem 1* under a suitable condition on 

the m X n loss matrix. 

Examples illustrating the extent, applicability, and non-vacuity 

of the sufficient conditions were given for all theorems. Examples 

were also presented to show that Theorem 6 is false without condition 

(C) and to demonstrate that uniformity in both the nuisance parameter x 

and e E Sî  is impossible in Theorem 7. 

Finally, we point out that Theorems 2 - 1 1 can be extended to 

include the non-simple, randomized procedure which is attained by 

substituting h for p(e) (and JT for x in Theorems 7 - 11) in the simple 

randomized procedure which assigns equal probabilities of selection 

among the columns minimizing (p(e), L^f) in (1.7). This randomized 

rule and the proof of this statement are given in Appendix 3. 



APPENDIX 1. 

Proof that Condition (II") Implies Condition (II') when p = P. 

See Chapter III for the discussion of conditions II' and II , 

Lemma 1,1 •_ 

Let X., i = 0,...,m-l be independent and identically distributed 

uniform random variables on [0,1]. If 0 < k 5 1 and if Z^ = Xi(l,X) , 

i = l,...,m-l and Z = (Z ,...,Z ), then the conditional distribution 

of Z given (1,X) = f^~_ X^ = k is uniform on S = {z =(z^ Vl'l ̂i " °* 

0 < (l,z) i 1} . 

m-1 
Proof. Fix z^, i = l,..,.m-l such that z.|0, 0<I^^^ z. ̂  1, Then, 

(1) P{(1,X) < k. Z^ < z^, i = l,...,m-l} 

= f ...f [d,x) <k, X. <(l,x)z^, i=l,..,,m-l] dXQ,..dx^_^ 

Jo ^0 

= (H;; i'^ a y^ ryo" ^ 0 = < c i ^) -̂̂  l̂^ 
where the second equality follows from the transformation y.= x^(l,x)- , 

m-1 
i = l,...,m-l. y^ = (1.x). having Jacobian y^ 

Similarly, the marginal distribution of Y^ = (l,X) is given by 

fl rl -1 m 

(2) P{^o'^] = j •••Jo [0 S 'l.x'^^'] '^0"-'^m-l= <""'> ^ ' 

m-1 
which follows from the transformation ŷ  = l^^. x^, j = 0 m-1 

nit Jacobian. The lemma follows from (l) and (2) by expressi 

the conditional density of (Z^ Ẑ _̂ ) as the joint density of 

n X)) which by (1) equals k™" divided by the density 
(^l'"" m' ' 1 m l 
of (l.X) which by (2) equals {(m-l)!}" k"" . 

ng 

85. 



Lemma 1,2. 

_m-l 1 

Let p= P = ) P- and let Pi Z represent the induced 

distribution on S under the transformation Z: u + Z (u),...,Z (u), 

with Z^ = dP./dP_, for i = l,.,,,m-l. If for some K", P̂ "z" S ^"\_i< 

then there exists a K' such that P̂ f"'''[Bj] = K'X^[B ] for Bj(v,a,b) 

of the form (3,ll*) with K = 1 and Vi(b-K) = 0, where f = (Z Z ), 
xl u m—1 

Proof, Note that by the definition of Pĵ f" , Pĵ Z" , and the assumption 

of this lemma, we have for j =-l,,.,,m-l, 
- 1 •"-! 

(3) Pif--̂ [Bj] S PiZ"-'([-v̂  s y£=i (vĵ -v„) Zj, S a-v„][Zj 1 b]) 

= ̂ "Vl(t-^o = l7=P\-o)-i ^ --o]Uj S b][z £ S]) 

m-1 
If j = 0, replace the second factor in (3) by [1-b i Ij=l ^j1• With 

a , = X ,[S], we see that the measure X* _ = a ., X ,, when 
m-1 m-1 m-1 m-1 m-1 

restricted to S, is uniform on S, Hence, by Lemma 1,1, the right-hand 

side of (3) equals for j = 0,,..,m-l, 

(1*) K' Ĵ  , , , ] ^ [0 =(v,x) |a(l,x)][xj =(l,x)b][0 <(l,x) Sl]dx^...dx^_^, 

-1 f ^ f ^ 
wnere K' = K'a a and a = / .. | [o < (l,x) i l]dx ,,,dx ,. m-1 m m J J > . ' J ^ j.̂_2 

o ^ o 

Observing that a = {k!} for k = m-1 or m and that the function 

under the integral in (1*) is bounded by [B.](x), we have that (1*) sub­

stituted into (3) implies Pĵ f""''[Bj] S K'X [Bj], where 

K' = a - a K" = m K", and the lemma is proved. 
m-1 m ^ 

Lemma 1.2 proves that condition (II") implies condition (II') 

when y = P 



APPENDIX 2 

Truncation of k to a Convex Set of R . 

Let T = {x = (x,,...,T )lx. £ R} be a convex set of R^. With T 
1 ' s' ' 1 

as the nuisance parameter set of Chapter IV, we shall give a constructive 

method of truncating k(X), given by (1*.5). to T. 

Lemma 2.1. 

If X is an exterior point of T, then there exists a unique point 

x' in the boundary of T, denoted B(T ) , such that HTQ-X^H =min^^^|xg-x ||, 

where ? is the closure of the convex set T. 

Proof. Since T' is closed, there exists a x^ £ T such that 

ll'̂ O-'̂ o" ^ "^"^XET " •̂O-'̂ll" Suppose Xg is an inner point of T. Then 

the line segment Xx̂  + (I-X)XQ, 0 ̂  X ̂  1, would intersect the boundary 

of T at a point x^ = X^x^ + U-)^^)^^, 0 < X^ < 1. Then x^ £ f and 

ll'̂Q-'̂oll = ̂ 0 II V o l l " 11 V ' o " ' "^^''^ ^^ ^ contradiction. Therefore. 

x' is not an inner point, and hence is a boundary point of T. 

To show that x' is unique, suppose there exists x̂^ in the boundary 

of T such that i|xjj-xj| = min^^^ 1|XQ-X||, X^ ^ X'. Then the three 

points X , x'.and x^ are the vertices of an isosceles triangle having 

equal sides HXQ-X^H = || T^-X J|. Hence, the mid-point of the base, 

given by Xg = |(^o "̂  ''l' ̂ ^^^^^^^^ *^^ Pythagorean equality 

(1) iv^2 i ' - i iv^2 i i ' = iiv^iii' • 

But , by convexi ty of T, we have Xg £ T and thus min^^^H ^ - T | | = Ihg-Tgll 

i i | | . ^ . x ' | | ^ I I V T J I = min^^^ l lxg -x l . Hence, d ) implies i|x^-Xg|| = 0 . 
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or X = X . a contradiction. Therefore, x is unique and the 

lemma is proved. 

Lemma 2.2 (Blackwell and Girshick). 

Let T be a convex set in R^. If x is an inner point of T and 

X a boundary point of T, then the points (l-X)x + Xx are inner 

points of T for 0 - X < 1. 

Proof. See Lemma 2.2.1(a) of [l]. 

With the aid of Lemmas 2,1 and 2.2 we can now truncate 

k(x) = (k,(X),...,k (X)) to T as follows. Let x„ E T be a fixed I s U 

interior point of T, which exists by the assumption on T in Chapter IV. 

Denote k (x) = (k *(X),...,k*(X)) as the truncation of k(X) to T 

given by. 

k(X) if k(X) E T 

(2) k»(X) = / k'(X) if k'(X)£T, k(X) «! T 

' V'̂ Ô'̂ ^̂ -̂ V̂ '"''''''̂ ^ if k'(X) i T, 

k(X) i T, 

where k'(X) is the unique boundary value of T closest to k(X) given 

in Lemma 2.1 and X^ = '>'ax̂ ĝ̂ ,j,j||xQ-x ||. Note that Lemma 2.2 guarantees 

that k*(X) £ T in the case where k'(X) i T and k(X) i T. The truncated 

estimate k» depends on the fixed value x̂ .̂ Note that from (2) we have 

that if r ^ T, then W^*-I'\\ i (x^u)-^ ||xg-k'|| < N " \ Thus with T a 

convex set of R^ we have exhibited a constructive method of truncation 

meeting the requirements of Chapter IV. 



APPENDIX 3 

Extension of Results for a Randomized Procedure, 

We extend Theorems 2 - 11 to the non-simple, randomized procedure 

defined by substituting the estimate h" for p(8) (and k" for x in 

Chapter IV) in the simple randomized procedure which assigns equal 

probabilities of selection among all columns minimizing (p(e), L^f) 

in (1.7). Such a randomized, non-simple rule is given by the N x n 

matrix of function T*(x) = (t*.(x)), where for j = 0 n-1, a = 1,...,N, 

(l) t*.(x) = r (a,x) or 0 according as j e or ^ R (x). 

where Rjj(x) = {j|(h,L''f(x )) = min(h,L f(x ))}, having cardinality 
" I' " _ * 

r(ci.x). We shall show that Theorems 2-11 (also, substitute k for 

t in Chapter IV) hold for the randomized procedure T*(x). 

Let ^ be the class of all permutations on the integers 

{0.....n-l}. The elements of %.. denoted by w , are 1-1 functions of 

{0,...,n-l} onto itself defined by TI(0,. .. ,n-l) = {TI(O) ,... ,Ti(n-l) }, 

where TI(J) E {0....,n-l} and Tt(j) = »i(k) if and only if j = k. 

Let ' denote the identity permutation having '(j) = j for J = 0,...,m-l. 

Now define the following class of non-randomized rules t , , -n z /I, , 
h 

given by 

1 if (h,L''̂ f(x )) < or = 0 according as 

ii(v) < Ti(j) or ir(v) > ii(j) 

0 otherwise. 

(2) C (x ) = { 
h.j " 

Note that ti. (x ) is that particular non-randomized, non-simple rule 
h.J 

given by (1.12) for which Theorems 2-11 are proved. Modifications of 
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this rule were made in Chapters II and IV and the corresponding 

modifications hold for the permuted rules in (2). 

Tt 
Now average the regret risk functions of the n! rules t— and 

h 

interchange the order of summation and integration to obtain 

Theorems 2-11 holding for the non-simple procedure defined by the 

N X n functions 

(3) (n!)"^ j;^^^ t! (x^), a = 1 N, j = 0 n-1. 
h,J 

We shall now prove that (3) = t* (x). 

Fix a,j,x and let r = r(o,x), R = R (x). Observe that j ^ R 

implies t" (x ) = 0 for all n £ ̂ . Hence, if j ^ R, (3) = 0 and 
h,j " 

so is t*.(x) given by (l). Next, observe that if j £ R, theft 

n °"̂  
L^a, t_ (x ) = y «, [it(v) > 7T(j) for all M Z R, where v # j] = [ 
"^^ h,j " ''^^<- t=o 

I/̂ |̂ (.)_tV ['"i^) * t for all V £ R, where v # j]. The number of 

permutations TI z 9l having the permuted position ii(j) fixed at t and 

with r-1 permuted positions TI(V) greater than t is (n-t-l)l P(n-r,t), 

where P(n,k) is the permutation of n objects k at a time. With C(n,k) 

denoting the combination of n objects k at a time, we have 

(n-t-1)! P(n-r,t)=C(n-t-l,r-l) (n-r)l (r-l)! Hence, by our earlier 

observations we have that if j £ R, then V «. t_ (x ) = F (n-t-l)l 
'•HE/? h,j " '•t=o 

n-r 
P(n-r,t) = (n-r)! (r-l)I Y C(n-t-l,r-l). Finally, since 

t=o 
n-r 

l^^^ C(n-t-l,r-l) = C(n,r), (see Feller [3], (12.8), p. 62), we 
conclude that if j £ R, 

(1.) ("T' I,,̂  t:^j(xj = r-l 
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hence, we have shown that t* .(x) defined by (l) equals (3). Since 
o'.J 

Theorems 2 - 1 1 hOld for the procedure given by (3). the same is true 

for T»(x) defined by (l). 
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